Unsupervised skin lesion classification and matching

Paula Yandow-Reilly

Follow this and additional works at: https://scholarworks.rit.edu/theses

Recommended Citation

Yandow-Reilly, Paula, "Unsupervised skin lesion classification and matching" (2003). Thesis. Rochester Institute of Technology. Accessed from

This Thesis is brought to you for free and open access by RIT Scholar Works. It has been accepted for inclusion in Theses by an authorized administrator of RIT Scholar Works. For more information, please contact ritscholarworks@rit.edu.

Rochester Institute of Technology Computer Science Department

Unsupervised Skin Lesion Classification and Matching

By
Paula Yandow-Reilly

> Thesis submitted in to the Faculty of the of the Computer Science Department, in partial fulfillment of the requirements for the Degree of Master of Computer Science

In the Golisano College of Computing and Information Sciences
Approved by:

Professor Roger Gaborski

Professor Hans-Peter Bischof

Professor James Heliotis

Thesis Reproduction Permission Statement

Permission granted

Title of thesis : Unsupervised Skin Lesion Classification and Matching

I, Paula Yandow-Reilly, hereby grant permission to the RIT Library of the Rochester Institute of Technology to reproduce my thesis in whole or in part. Any reproduction will not be for commercial use or profit.

Date: _February 25, 2003
Signature of Author:

Skin Lesion Analysis via Image Processing and Neural Net Matching Paula Yandow-Reilly

 February 2003Graduate Computer Science Department
Rochester Institute of Technology
Rochester, New York 14616

Abstract

According to the American Cancer Society (ACS), since 1973, the mortality rate for melanoma has increased by 44%. The number of serious skin cancers diagnosed has also more than doubled in that same period. Even though serious skin cancers (melanoma) account for only 4% of skin cancer diagnoses (and skin cancer is the most common cancer) it is responsible for almost all (79\%) cancer deaths. The ACS reports about 7,300 people in the United States are expected to die of melanomas in 2002, other sources put the number as high as 7,800 . There are about 130,000 cases of melanoma worldwide, and about 37,000 related deaths. Many physicians think the increase in melanoma diagnoses represents an epidemic. Currently, there is work to improve diagnostics once a lesion comes under suspicion, and there are also systems to do whole body images of skin lesions. Where there seems to be a gap is in tracking and classifying the lesions in image histories. The critical problem is not so much how to treat the lesion once its discovered, but to detect it in the first place. In addition, in the classification systems encountered, there didn't seem to be any using all combinations of color, texture, and shape, any or all of which can help detect a malignant growth. Since almost all lesions are slow-growing, and very often on the back, it can be difficult for both patient and doctor to detect when a lesion has begun to change, which is one of the first warning signs of skin cancer. This work is comprised of an analysis system written in Matlab, which pre-processes the image, removing background artifacts via morphological operations to segment the lesion. The lesion is then processed for shape, color content, and texture. This occurred for a small database of images comprising melanomas, dysplastic nevi, and moles, and 10 feature vectors were captured for each image along with the filename and matching diagnosis. Additional images were procured from the web, and also from photographs of individuals using a Cannon EOS Rebel G, which were scanned in using an Acer ScanPrisa 640U. These images were then processed with the same software used for the database images. The results were classified based on these feature vectors and assigned a FWL (Feature Warning Level). Lastly, the input results were compared to the database for matches within a range for similarity. The closest match (if within a reasonable range) is reported. This system could be attached to existing tracking systems (like MoleMap) or used as a stand alone tracking tool for dermatologists. Any change in one of the feature vectors, or in a group of features could trigger a closer look by the physician. According to literature, and a dialog with a dermatologist, history is the one of the most critical factors in early detection, when the cancer can be completely cured.

Unsupervised Skin Lesion Classification and Matching

By
Paula Yandow-Reilly

Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Computer Science

In the Golisano College of Computing and Information Sciences, Department of Computer Science

February 2003

DEDICATION

To my loving and long-suffering family, my deepest gratitude for their support and fortitude while they persevered without me for so many hours. To my immediate managers and my staff, who, supported, encouraged, and tolerated my preoccupation with this research effort my sincere thanks. I also want to thank Dr. Bischof and Dr. Carithers for supporting me in my hour of need. And finally, and especially, to Dr. Gaborski, for not only supporting and encouraging me, but for re-firing my interest and enthusiasm for science.

Unsupervised Skin Lesion Classification and Matching

Table of Contents
Table of Figures 2
Introduction. 3
1.1 Research Motivation 3
1.2 Skin Anatomy 3
1.3 Skin Anomolies. 4
1.4 Melanoma Detection. 5
1.5 Dermatology Tools 7
1.6 Research Goal 9
1.7 Outline of Thesis 9
II Data Sources 11
III Previous Work 12
3.1 Introduction 12
3.2 Morphological Operations 12
3.3 Algorithms for Measuring Shape 17
3.4 Algorithms for Measuring Color. 18
3.5 Algorithms for Texture. 21
3.6 Other Work in Unsupervised Image Analysis 25
IV Algorithms 27
4.1 Morphological Operations 27
4.2 Image Border Processing 29
4.3 Shape Analysis 30
4.4 Color Analysis 31
4.4 Texture Analysis 32
4.5 Classification 33
4.6 Database Read, Match and Write 33
V Results 34
5.1 Images that Segmented Well 34
4.2 Types of Images that Did Not Segment Weil. 39
4.3 Tracking History 41
VI Conclusions 43
VII Future Work 44
End Notes 45
Appendix A - Image thumbnails 46
Appendix B - Matlab Code 48

Figure Number and Name	Page
1.1 Anatomy of Normal Skin	3
1.2 Benign Nevus	5
1.3 Dysplastic Nevus	5
1.4 Malignant Melanoma	5
1.5 Asymmetric Border	6
1.6 Border Irregularity	6
1.7 Multiple Color	7
1.8 Dimension	7
1.9 Surface Lesion	8
1.10 Subsurface lesion	8
3.2.1 Logical AND/OR	13
3.2.2 Structuring Element	13
3.2.3 Matlab Structuring Elements	14
3.2.4 Erosion	14
3.2.5 Erosion full	15
3.2.6 Dilation	15
3.2.7 full Dilation	16
3.2.8 Open Operation	16
3.2.9 Close Operation	19
3.4.1 RGB Color Cube	20
3.4.2 HSV Color Space	23
3.4.3 Co-occurrence matrix	26
4.1.1 Application Flowchart	34
5.1.1 Melanoma	34
5.1.2 Image during Morph operation	34
5.1.3 Segmented Image	35
5.1.4 Raised edge	35
5.1.5 Background hairs	36
5.1.6 Off-center image	36
5.1.7 blue nevus	37
5.1.8 pigmented birthmark	38
5.1.9 mole	39
5.1.10 dysplastic mole	
5.1.11 mole match	37
5.1.12 dysplastic mole match	38
5.1.13 melanoma match	16

skih Lesion Analysis via Image Processing and Neural Net Matching

Figure Number and Name	Page
5.2.1 melanoma background shadow	39
5.2.2 melanoma glare	40
5.2.3 melanoma failed segmentation	40
5.3.1 History pigmented birthmark	41
5.3.2 History mole	42

Unsupervised Skin Lesion Classification and Matching

Section I : Introduction

1.1 Research Motivation

According to the American Cancer Society (ACS), since 1973, the mortality rate for melanoma has increased by 44%. The number of serious skin cancers diagnosed has also more than doubled in that same period. Even though serious skin cancers (melanoma) account for only 4% of skin cancer diagnoses (and skin cancer is the most common cancer) it is responsible for almost all (79\%) cancer deaths. The ACS reports about 7,300 people in the United States are expected to die of melanomas in 2002. ${ }^{1}$ on their site, other sources put the number as high as $7,800 .{ }^{2}$ There are about 130,000 cases of melanoma worldwide, and about 37,000 related deaths. ${ }^{3}$ In addition, while fair skinned individuals living in sunny climates are most at risk, it is a myth that they are they only vulnerable demographics. Individuals with darker skin are also at risk, especially on the soles of the feet, palms of the hands, under nails, or in the mouth. Many physicians think the increase in melanoma diagnoses represents an epidemic. Here is an excerpt from a white paper on the American Cancer Society web site:

Malignant melanoma will be diagnosed in over 40,000 people this year; about 7,300 will die from it. Deaths from melanoma have climbed steeply, an increase many doctors attribute to more recreational sun exposure and, possibly, to the thinning of the ozone layer which acts as a buffer between the earth and the sun's rays. " 4

As with any cancer, early detection is key, and this could be aided by an easy to use diagnostic system, which would allow the user to enter an image for classification. Since the importance of early detection cannot be over-emphasized, even if the lesion is mis-classified, this is better than not catching a lesion before it's metastasized.

Figure 1.1 Anatomy of normal skin from the American Cancer Society Website *
http://www.cancer.org/docroot/CRI/content/CRI_2_2_1X_What_is_melanoma_skin_cancer_50.asp?siteare $\mathrm{a}=$ CRI

Unsupervised Skin Lesion Classification and Matching

1.2 Skin Anatomy

Weighing on average, about six pounds, skin is the largest organ for humans. Skin plays a vital role in protecting internal organs, and also provides a critical barrier for both keeping things out (like microbes and other pollutants) and keeping things in (like water and other fluids). It also helps us maintain a steady temperature, and helps the body excrete excess water and salts. Lastly, specialized cells in the skin allow sensations of temperature, touch, and pain.

As indicated in figure 1.1, the skin has three major layers: epidermis, dermis, and the subcutis. The epidermis is the outer layer, and is thin, (around 0.2 mm) and protects the deeper layers of skin. The stratum corneum is the outer horny layer composed of dead keratinocytes which are continuously shed. These cells are pushed up from the lowest level in the epidermis: the basal cells. The round shaped basal cells produce the flat, scale-like living squamous or keratinocyte cells that make up the inner layer of the epidermis. As these cells age and die off, they move to the surface to be shed. This process takes around 30 days. Interspersed in the lower part of the epidermis layer are also the melanocytes that produce the protective pigment, melanin, that helps shield the deeper layers of the skin from harmful solar radiation. This layer ends with something called the basement membrane, which separates the epidermis from the dermis.

The dermis layer is thicker and contains hair follicles, blood vessels, sebum and sweat glands, and nerves. The sweat and sebum reach the skin's surface via tiny pores. These important structures are held in place by a substance called collagen. Fibroblasts make the collagen, which gives skin strength and flexibility. The papillary dermis contains blood vessels that provide both the epidermis and the non-vascular epidermis with vital nutrients. Further, the vasculature is organized so that by increasing or decreasing blood flow, heat can either be conserved or dissipated. ${ }^{3}$ The papillary dermis also contains the free sensory nerve endings and structures called Meissner's corpuscles that provide the sensory data to the brain for touch, pain, and temperature.

The demarkation between the dermis and the deepest layer, the subcutis, is a bit blurred. Both of these layers contributing to a buffer layer of fat and collagen that provides a kind of shock absorber to protect internal organs, and also help conserve body heat.

1.2 Skin Anomolies

As detailed above, skin is actually a heterogenous organ, made up of a diverse group of tissues. These different kind of tissues develop a wide variety of benign as well as malignant tumors. The focus of this work is on melanocytic lesions, as opposed to other growths and rashes.

Melanocytic lesions is the technical term for what is often called a "beauty mark" or mole. These are usually a uniform brown in color and uniform in texture, with a round or oval shape, and sometimes the mark is raised. These lesions are formed by groupings or "nests" of melanocyte cells (which produce the brown pigment, melanin, hence the color of the moles.) Basically these lesions fall into three loose categories : normal or benign, dysplastic (often called pre-cancerous) and malignant melanoma. The trick is to correctly determine which is which. The image on the next page is of a normal mole: its uniform in color, shape and texture.

Unsupervised Skin Lesion Classification and Matching

figure 1.2 Benign Nevus *
The two images below are the one's of interest to the clinician: the first image is usually indicating a warning sign, and the second requires surgical removal.

figure 1.3 Dysplastic Nevus *

figure 1.4 Malignant Melanoma *

The table below details some of the more common skin anomalies.

type of anomaly	description	benign	malignant
moles	tumors that develop from melanocytes	X	
Seborrheic keratoses	tan, brown, or black raised spots with a "waxy" texture or rough surface	X	
hemangiomas	blood vessel growths (aka "Strawberry spots or port wine stains") Hemangiomas are a common vascular birthmark. They are usually painless and benign. The cause of hemangiomas development is unknown. The color results from a proliferation of blood vessels at the sight.	X	
lipomas	soft growths of fat cells		
warts	rough surfaced growths caused by a virus	X	
pigmented birthmark	A congenital pigmented skin marking that ranges in color from brown or black to bluish or blue-gray	X	
freckle	small area of pigment, often found in light skinned individuals	X	

http://www.cancer.org/docroot/PED/content/ped_7_1_Skin_Cancer_Detection_What_You_Can_Do.asp?sit earea=PED

Unsupervised Skin Lesion Classification and Matching

1.3 Melanoma Detection

One of the most challenging tasks for a medical care provider is accurate diagnosis and treatment of skin lesions. In some cases, its only possible to correctly diagnose a lesion after excisement and microscopic analysis. Its possible for a early-stage melanoma (in-situ melanoma) to appear as a normal non-cancerous mole (benign nevus) and much more common, for a normal mole to appear cancerous.

In an interesting lecture at Yale University, Dr. James Grichnik reported when a physician encountered a skin lesion, the odds are 200,000 to 1 that it's early stage melanoma. ${ }^{5}$ Therefore, it appeared to him to be both impractical and over-kill to remove all moles for every patient with a concern. He further indicated that this that he had four steps to try to tease out the correct diagnosis:

1. listen to the patient (for reasons unclear to the clinician, the patient correctly worries about the one mole of many that is cancerous.)
2. total body scan (determining what kind of moles an individual grows)
3. dermoscopy (closer look)
4. photographic record (checking for changes)

A group of Scottish dermatologists in Glasgow developed a seven-point checklist to determine lesions that should be examined further. The list has 3 major features: change in size, shape, or color - and 4 minor features: inflammation, crusting or bleeding, sensory change, and diameter greater than 7 mm . It is possible that in the first point of Dr. Grichnik's detection strategy mentioned above, that it is some small sensory change that the patient notices that causes them to worry, which is not detectable to the physician.

The American Academy of Dermatology web site ${ }^{5}$ does a good job explaining the "ABCD's of Melanoma Detection". The idea is that individuals should perform these self exams periodically. The 'A' stands for Asymmetric. This is in reference to the shape of the lesion. For example, the image below is asymmetric:

figure 1.5 Asymmetric Border Example *
The ' B ' stands for Border irregularity. Again, this is related to the shape of the lesion, but in particular the smoothness of the edge is the focus. Below is an example of a lesion with significant border irregularity:

figure 1.6 Border Irregularity *

[^0]
Unsupervised Skin Lesion Classification and Matching

The ' C ' is in regard to the lesion color or colors. Lesions with many colors, particularly high percentages of red, black, or blue are indicators of melanoma. The image is an example of a lesion with a large percentage of red and black:

The final metric, indicated by the letter ' D ', is for dimension, or size of the lesion. Anything greater than six millimeters is cause for concern.

figure 1.8 Dimension $>6 \mathrm{~mm}$ *
Another measure more important for treatment, rather than detection is the depth of the lesion. This has been shown to be a critical factor in both initial recovery and tumor recurrance. In a recent study, researchers from the University of Louisville and Duke University determined that tumor thickness played a role in the recurrence of the cancer.
> "But by far the most important factor seemed to be the thickness of the tumor. In the worst-case scenario (tumor thickness greater than 8 mm), the cure rate for women with tumors on extremities was only 31%. For men this rate was 24%. Those in this group who had a recurrence survived for an average of about five years from the time of first treatment." ${ }^{6}$

The article further underlines, that if a cancer is caught early, it can be treated with surgery. However, once the tumor has spread, it can be very difficult to treat.

Another metric, helpful in initial diagnosis is lesion texture. A lesion with a very bumpy, or rough texture, combined with other symptoms is should be investigated.

1.4 Dermatology Tools

Aside from excising the mole and performing a biopsy (which, given the 200,000 to 1 likelihood of melanoma doesn't seem practical.) There are several non-invasive diagnostic systems. Given the success of public campaigns for getting patients in to have thin lesions examined, and general practitioners attempting to diagnose lesions that are difficult for dermatology experts to correctly classify, there has been significant growth in a variety of noninvasive diagnostic tools. ${ }^{\text {? }}$

[^1]
Unsupervised Skin Lesion Classification and Matching

Duke University working with DigitalDerm, Inc. has developed a tracking tool called MoleMapCD that allows high definition viewing and storage of up to 33 images, supporting a whole body scan of patient skin. This system inherently provides an archive of patient mole images that can then be used to track any mole changes with subsequent visits.

Art Papier,M.D., assistant professor of dermatology at the University of Rochester, working with Logical Images, Inc. in Rochester created a software system, VisualDx, with a database of thousands of searchable images. The search engine has been tuned, so users can enter descriptions of the skin lesion, rash, or whatever, and the system will return images that match. This way, the health care provider doesn't first have to turn to textbooks to try to guess at a diagnosis first and then try to find a matching image. According to the report on the UniSci website ${ }^{8}$ the software more than doubled the rate of accurate diagnosis.

There are a number of researchers, as well as commercial providers such as Dermlite (www.Dermlite.com) that provide tools for Epiluminescence Microscopy (ELM). This tool allows health providers the ability to not only see the surface lesion, but to also view some of the structures beneath the skin. Basically, the process involves a drop of oil on the lesion site. A special type of dermatoscope or binocular stereo microscope is used (also called dermoscopy, dermatoscopy, or surface microscopy) to view the site. The oil makes the epidermis somewhat transparent by reducing the refractive index mismatch between the corneum layer and the air. The site is covered with a glass slide and the subsurface features are viewed with the viewing device with magnitudes from 10x to $40 x$.

In some applications of ELM, two filters are used to improve viewing. The first filter is placed over the light source. The filter is polarized to have the same phase angle as the source light, which allows some of the light to enter the skin. The light entering the skin becomes diffuse and is reflected back out from white collagen fibers at the dermis level. The second filter is on the viewing device and is polarized to only allow the light re-emitted from the skin to enter the viewing device. If the viewing filter is set to the same phase angle as the source filter a surface view can be seen by capturing the regular reflection. ${ }^{9}$

figure 1.9 Surface Lesion*

figure 1.10 Subsurface Lesion image*

The potential of the ELM technology is that it reveals additional metrics that can help the physician provide the correct treatment, which is critical for survival when the lesion is a

[^2]
Unsupervised Skin Lesion Classification and Matching

melanoma. Besides the features already discussed, ELM also allows measurement of an erythmatous blush (seen above in figure 1.9), displacement of blood in the papillary dermis by the lesion, holes in the papillary collagen from the invading tumor, collagen arranged in circular patterns around the tumor, or nodules, and dermal melanin in haphazard arrangements in the lesion area.

Another methodology worth mentioning is called Spectrophotometric Intracutaneous Analysis scope (SIAscope). This was developed by a team of researchers in the United Kingdom and Germany. This device uses both visible and infrared light to extract information about the composition, concentration and position of collagen, blood vessels, and melanin.

Abstract

"SIAgraphs are obtained by capturing eight filtered waveband images of a skin lesion extending from 400 to 1000 nm . These waveband images are then calibrated and act as inputs to a series of computer algorithms that extract information regarding the microarchitecture of the skin [10]. First the algorithm utilizes infrared wavebands to ascertain the quantity of collagen within the papillary dermis for every point over the skin lesion. This is the crucial step for this technique and provides a necessary transformation on the wavebands allowing accurate extraction of total melanin and blood. The total melanin, collagen and blood SIAgraphs can now be displayed." ${ }^{10}$

Clearly, these more in-depth techniques are used when the practitioner is already suspicious. While numbers seem to vary a bit from organization to organization, in general, about 27% of patients who contract melanoma die, which would seem to make it critical to make that initial diagnosis as quickly and effectively as possible so that these further diagnostics can be performed.

1.5 Research Goals

The things this research will not do is to provide a definitive diagnosis. Its meant only as a sort of computer "guess" at what might be a problem. It currently will not provide a searchable database, although it seems like it could be a nice marriage between what Dr. Papier has already done with an auto classifier. The system is not matching features between the pre-diagnosed image database, and the input image...its only matching against feature values that were found to be indications of melanoma.

The system also is not using the many additional features that could be extracted from a subsurface ELM image...this could be very useful, but as mentioned above, it is the initial warning that this research is interested in, before someone gets interested enough to think about using a dermatoscope.

The system was written entirely using the Matlab application and Matlab *.m and *.mat files. Its possible, and maybe probable that the application could work faster or more efficiently if some other languages or platforms were used, although, the average image only took a few minutes to process. That however, was not the focus of the research.

The goal of this research was to investigate an automatic classifying process that would provide clinicians, and possibly the general public an early warning mechanism for worrisome spots on the skin. Imaging technology can do much with a color image of a lesion. There are algorithms for determining the shape of a lesion, histograms to analyze the color content, and texture algorithms that can be used to assign a measure of an image's smoothness. This allows for a system to accept an input, preferably color image and perform feature extractions. These features can then be analyzed and assigned a Feature Warning Level (FWL) that indicates lesions

Unsupervised Skin Lesion Classification and Matching

that should be more carefully examined. In addition, the software can mine the site and display the image and associated feature vectors of the closest match.

1.6 Outline of Thesis

Section 1 explains the purpose of the research: creating a system of feature extraction and matching to explore an automatic diagnostic tool for skin lesions.

Section 2 briefly describes the sources for the data used, and how some data was collected independently.

Section 3 is an overview of previous work in the areas of edge detection, color analysis, and texture measurements. Since these are each huge areas of research and there is a wealth of material, they will be covered superficially, but with enough depth to explain the background algorithms that support the research.

Section 4 details the actual algorithms used and covers the system design.
Section 5 will cover experiments and results.
Section 6 conclusions from the results.
Section 7 will discuss future work that could be done to extend this effort.

Unsupervised Skin Lesion Classification and Matching

Section II : Data Sources

Images were collected either from the web or from photographs taken with a still Camera EOS REBEL G with zoom lens EF $35-80 \mathrm{nn} \mathrm{f} / 4-5.6$ III. After being developed at both high-end and one-hour kind of processing establishments, the glossy images were scanned in using an Acer ScanPrisa 640U, which is a inexpensive scanner. Several photos were taken in bright sunlight, but most were taken indoors with a flash.

The image database was created completely from images taken from dermatology web sites. This supported a desire for pre-diagnosed images, and also for avoiding any special efforts to produce very high quality images. The images used were exclusively JPEG/JPG, which seemed to be the format of choice for these sites. The web sources for the data can be found in Appendix A.

The following web sites were the prime sources for images:
The University of Iowa http://tray.dermatology.uiowa.edu/Dermlmag.htm has an absolutely impressive image database. Approximately seventy percent of images were culled from this source.

State University of California at Davis http://matrix.ucdavis.edu/tumors.html was a good source of images, mostly courtesy of Art Huntley M.D..

University of Florida : The Molehill part of the Health Science Center. Images courtesy of Dr. Frank Flowers, MD. http://www.health.ufl.edu/molehill/molehill.html

Homepage of New Zealand Dermatological Society http://www.dermnetnz.org/
Loyola University Medical Education Network which was created by Jeffery L.
Melton MD and Jason R. Swanson
http://www.meddean.luc.edu/lumen/MedEd/medicine/dermatology/melton/atlas.htm
The University of Utah with images by John L. Bezzant
http://medstat.med.utah.edu/kw/derm/
The University of Indiana http://erl.pathology.iupui.edu/cases/dermcases/dermcases.cfm

This page provided a very good collection of links for mostly academic sites for dermatology images:
http://www.fammed.wisc.edu/education/presentations/derm/Dermcurriculum.html

Unsupervised Skin Lesion Classification and Matching

Section III : Previous Work

3.1 Introduction

For each of the three main features: shape, color and texture, there are a wealth of algorithms to select from. For the most part, all of these algorithms can segment and identify regions of interest with good accuracy with supervised processing. When working with large databases, however, its desirable to process images without supervision.

In this research, the expectation is that each image in the database will contain a central feature of interest in a fairly uniform, lighter background. The most important first step is to segment out the region of interest, as this is critical to allow examination of the region for shape, color and texture.

In skin analysis, the first hurdle to jump is to find a way around the very textured nature of the skin, i.e. the background. Directly applying an edge detection process to an apparently simple image produces a very noisy result with edge segments distributed uniformly across the image plane.

Since the application is designed to expect a centered image on a uniform, clear background, a good solution is to use morphological operations to filter out the texture of the skin, but preserving the better-defined central object.

3.2 Morphological Operations

The word morphology is from the Greek words morfh and logos, meaning "the study of forms" and in terms of image processing really means mathematical morphology. This process was developed in the early 1960's by two Frenchmen, Jean Serra and Georges Matheron, and was built on the foundations of set theory. Together they developed the discipline of mathematical morphology. In 1964, Serra coined the term mathematical morphology, and the subject was documented in detail in a treatise entitled "Image Analysis and Mathematical Morphology" published by Academic Press in 1988. This continues to be an area of active research. Dr. Edward R. Dougherty (who has ties to at least one graduate student at Rochester Institute of Technology) a professor in the Department of Electrical Engineering at Texas A\&M University in College Station has helped advanced this field and produced many papers and at least one text on the topic: An Introduction to Morphological Image Processing.

The main operations of morphological image processing are dilation and erosion. The processes are shaped by a structuring element. If an image is complex, the morphological process may require hundreds or even thousands of different structuring elements. One area of interest is to discover how to automatically produce these structuring elements to produce optimal results.

The underlying operations are based on logical AND and OR operations described in figure 3.2.1.

Logical AND

0 AND $0=0$
0 AND $1=0$
1 AND $0=0$
1 AND $1=1$

Logical OR

0 OR $0=0$
0 OR $1=1$
1 OR $0=1$
1 OR $1=1$
figure 3.2.1
In figure 3.2 .2 below, is an example of a structuring element created by Matlab. Figure 3.2.3 shows a table of the various options in Matlab for structuring elements. As you can see in the figure, Matlab always uses the center of the structuring element as the origin. The origin indicates the pixel that will be operated on and potentially altered in the output matrix. The erosion process uses the AND operation. As you can image, in a binary image, this has three chances out of four to replace the pixel being processed with a ' 0 '.


```
HHOOD = [ \(1000 ; 100: 1001]:\)
```

figure 3.2.2 ${ }^{\text {* }}$

Flat Structuring Elements	
'arbitrary'	'pair'
'diamond'	'periodicline'
'disk'	'rectangle'
'line'	'square'
'octagon'	
Nonflat Structuring Elements	
'arbitrary'	'ball'

figure 3.2.3 **

[^3]As you can guess from the table in figure 3.2.3, this process can become very complex. Erosion, and the companion operation, Dilation are probably best described by looking at a toy example. The structuring element is move systematically over the image matrix. In the diagram in figure 3.2.4 a tiny structuring element, B , operates on the toy image A . The output matrix is displayed in C . In this diagram, the structuring element is covering pixels at $(2,2)$ and $(2,1)$. The ' 1 ' in $(2,2)$ ANDs to a ' 1 ', but the ' 1 ' in $(2,1)$ is AND-ed with a ' 0 ' and results in a ' 0 '. The next step in the process, is for these two results to be AND-ed again, so the ' 1 ' and the ' 0 ' are AND-ed and result in a final value for the result pixel of a ' 0 '.

figure 3.2.4 Erosion ${ }^{*}$
As you can see, this operation eroded the number of ' 1 ' pixel to a ' 0 '. In figure 3.2.5, the process has been executed over the full toy matrix. As you can see, the pixels with a ' 1 ' value have been eroded down to a single pixel.

figure 3.2.5 full Erosion operation on Matrix A**

[^4]
Unsupervised Skin Lesion Classification and Matching

In the dilation operation, with the logical OR operation, the ' 1 ' pixel is preserved as shown in figure 3.2.6. As long as at least one member of the structuring element is overlapping the target set (the pixels with the ' 1 ' value) you get a ' 1 ' back.

figure 3.2.6 Dilation ${ }^{*}$

In figure 3.2.7, the result from the full operation on set A is shown.

A	0	1	2	3	4
0	0	0	0	0	0
1	0	0	1	0	0
2	1	1	1	0	0
3	0	0	0	1	0
4	0	0	0	0	0

figure 3.2.7 Full Dilation Operation on Matrix A **
There are two other important operations in morphological operations that are combinations of erosion and dilation: the open and close processes. In the open operation, a dilation operation is followed by an erosion operation. This is demonstrated in figure 3.2.8. In real images, this operation is called opening because narrow gaps

[^5]
figure 3.2.8 Open Operation *
open up and thin protrusions disappear. In the skin images in this application, that aids in the removal of the edge fragments that appear from the skin's texture. In the close operation demonstrated in figure 3.2.9, the operations are performed in the opposite order.

figure 3.2.9 Close Operation**
In this process, in a real image, small holes and gaps are filled in. This can aid in connecting edge fragments in the area of interest that you are trying to segment.

These basic operations are all functions that can be called in Matlab, streamlining the coding.

[^6]
Unsupervised Skin Lesion Classification and Matching

3.3 Algorithms for Measuring Shape

3.3.1 Compactness

There is a classical topological formula for measuring the shape of an object. It's called the compactness ratio. The formula is:

$$
\text { Compactness }=\frac{4 \pi A}{P^{2}}
$$

Where $\mathrm{A}=$ the area of the region being examined and P is the perimeter of the region of interest. The general idea is that the most compact object would be a circle, as there would be no spaces in the object. In the event that the shape being analyzed was a perfect circle, the equation would be equal to 1 as shown below:

$$
1=\frac{4 \pi * \pi r^{2}}{(2 \pi r)^{2}} \rightarrow \frac{4 \pi^{2} r^{2}}{4 \pi^{2} r^{2}}
$$

inserting the formula for circumference for P in the denominator, and the formula for the area of a circle, A, in the numerator. Since benign skin lesions tend to be round-shaped with smooth edges, these images should produce a lower compactness value than an oddly shaped object.

3.3.2 Convex Hull

One way to describe the convex hull of a set of points is if you wrapped the outermost points with a string. The more technical description is the smallest convex set containing the points.

Matlab supports a function called convhull, which in turn relies on an algorithm called Qhull, which was developed by a team working on a grant from the National Institute of Health. 11 The team was composed of C. Bradford Barber (University of Minnesota), David P. Dobkin (Princeton) and Hannu Huhdanpaa (Configured Energy Systems, Inc.). For the most part, this algorithm builds on the Quickhull Algorithm introduced in the late 1970's (Eddy 1977, Bykat 1978, Green and Silverman 1979, and Preparata and Shamos 1985.) The quickhull algorithm is a process that recursively partitions a set of points until no more points can be partitioned. This partitioning step is where the main content of the algorithm is. It works as follows:
The algorithm is given the set of points, S , to be processed, and a line segment AB ,
whose endpoints are known to be on the convex hull. (A usual choice is a line between the most left and the most right points in the set.)
The points are Partitioned as follows:

Unsupervised Skin Lesion Classification and Matching

- Find a point in the set that is farthest from the given line segment, say C. Use this point to create a triangle ABC by connecting the two end points from the initial line segment to this new point.
- The points inside this new triangle cannot be on the hull. Put them in set inside_S.
- Put the points that lie outside the AC edge in set S_left, and the points that lie outside the BC edge in set S_right.
The process in step 2 is repeated for the points in sets S_right and S_left, and recurrsively in those regions until there are no points left to process in S_left and S_right. At this point, the points on the convex hull perimeter will be identified.

This process works the most quickly on random points since the initial partitioning step will capture a large set of the initial points.

3.4 Algorithms for Measuring Color

3.4.1 Colorspaces

The human vision system perceives colors via structures in the retina called cones. The fact that almost any color can be created from three primary colors is due to the fact that there are three kinds of these cones that recognize red, green and blue. This provides a sort of color alphabet that can be used to recognize a wealth of colors. This fact is leveraged with computer monitors using red, green and blue phosphors, allowing the screen to display virtually any color. It's used again for printer systems, which use cyan, magenta, and yellow inks (CMY). In this case, there are two different combinations because monitors emit light, whereas printers reflect light. When a white light is shined on ink, the color is the component of white light that is reflected and not absorbed by the ink. The Hue, Saturation, and Value (HSV) color system is closer to how humans perceive color. Humans normally think about color in terms of shade, how bright it should be, and if it should be pastel or vivid. Usually the first thing humans notice is the hue of a color. Hue defines the shade and where the color is found in the color spectrum.

This combination of three values is called a color space, and the shape of this space is often described as a cube. Although theoretically, any color space could be created by using independent colors but those color spaces are not identical to other colorspaces. This makes it a bit impractical for a real system. There will be a part of the color range that can't be reproduced in another colorspace. Some other colorspaces that will convert back and forth are YIQ or IYQ, and HIS (or ISH) which stands for Hue Saturation and Intensity. The YIQ colorspace is useful in color TV broadcasting: it converts to RGB easily, and the Y component supplies all the information needed for black and white broadcast. We'll look a little more closely at RGB (since that was used in this research) and HSV as a more detailed example of a different colorspace.

3.4.2 RGB

Unsupervised Skin Lesion Classification and Matching

In this space the image is composed of 3 matrices for each of the primary color components. The color values range from 0 to 255 . If all three values are 0 , the color perceived will be black. If all three values are at or near 255 , the pixel will be displayed as white. Values between 1 and 255 yield gradations in the color intensity. Pixels where the values are equal for the red, green and blue components will display as grey. As these equal value progress from 0 to 255 the grey will become lighter and lighter. A graphic representation of the color cube is depicted in figure 3.4.1. Note the diagonal

R: red
G: green
B: blue
C: cyan
M: magenta
Y: yellow
W: white
figure 3.4.1 RGB color cube*
line between 0 and W or $255 \ldots$ this indicates the grey line, where all color components are equal. This is referred to as the neutral axis.

3.4.3 HSV

As mentioned previously, this color space matches human perception most closely. The human vision system first notices hue and then saturation and value. In the HSV system, the saturation value describes how pure the hue is with respect to white: A color that is all blue with no white is fully saturated. If you add some white pixels to the image, the color shifts from blue to light blue. The hue is still blue, but its becomeless saturated. Lastly a color has a certain value. If you see a bright red poppy in full sunlight

[^7]
Unsupervised Skin Lesion Classification and Matching

and then again in the evening you will note that the color appears duller. Value and Saturation are represented with values from 0 to 100. If the value is a low number the color will appear dark. If the saturation is a low number the color will appear lighter or more diluted. Hue is represented by values from 0 to 360 . Looking back at figure 3.4.1, you can see that red, yellow, green, cyan, blue, and magenta are distributed equally in angle around the neutral axis. The wedge defined by the neutral axis is a plane of constant hue. Since hue is a function of angle, the range will be from 0 to 360 degrees. (Although hue is constant, brightness and saturation will vary over the range of possible values.) Figure 3.4.2 depicts the HSV color space.

figure 3.4.2 HSV Color Space*

3.4.4 Value of Color Information in Image analysis

In 1991, Michael Swain and Dana H. Ballard published a paper in the International Journal of Computer Vision called "Color Indexing". While much of the imperative for doing this research was in support of robotic systems it turned out to have broad impact on image analysis. At this time, color was, apparently not being closely explored.
"The ease of recognition using color strands is contrast to the neglect given recently

[^8]to color as a recognition cue...Instead, much more attention has been given to geometric algorithms that extract shape from stereo, motion, and lighting cues." ${ }^{12}$

Then a bit later in the paper:
"...Geometrical cues will be the most reliable of object identity. While this may be generally true, it may not be true for routine behavior (Chapman, 1990). In such behavior, wherein familiar objects are interacted with repeatedly, color may be a far more efficient indexing feature." ${ }^{13}$

The thrust of this paper was to use color histograms to identify objects in an image where there was some knowledge of the approximate location of the object. This then allowed the researchers to compare a "model histogram" with the histogram from the region of interest in the image. They called this "Histogram Intersection". While this methodology was not used in this research, and in the twelve years, much research has been done using color to perform edge detection, segment images, image retrieval and color texture analysis, the concepts of using color to identify objects, or features of interest influenced this work.

3.5 Algorithms for Texture

3.5.1 Definition

There seems to be a struggle in the field to find the perfect definition of texture, probably due to the fact that it covers such a broad concept. Here is a definition from a Computer Vision textbook, Image Processing, Analysis, and Machine Vision by Milan Sonka, et al.
" We might define texture as something consisting of mutually related elements; therefore we are considering a group of pixels (a texture primitive or texture element) and the texture described is highly dependant on the number considered (the texture scale)[Harlick 79]." 14

Texture is created from smaller elements, often called primitives or texels. Texture description is scale dependant (think of a woven fabric printed with flowers.). The main goal in texture analysis is to accurately represent the texture (or conversely, texture recognition) and also texturebased shape analysis. A texture primitive is a contiguous set of pixels with some average intensity, size, shape, and there is something that can describe their spatial relationships.

This visual texture is really variations in gray or color levels in an image. These textures can be described based on the pixel intensities in a primitive (tonal properties) and structure, which can be determined by pixel relative locations to each other.

If the texture primitives in the image are small, but have tonal differences, the texture will appear to be fine grained. Larger primitives will present a coarser texture. There are also strong (the spatial relationships between primitives is regular) textures and conversely, weak textures. Weak textures have small spatial relationships and can be handled well by statistical methods.

Texture algorithms, of which there are many, tend to group into two main approaches: statistical and syntactic. Statistical algorithms are most commonly used and work best if the texels map well to pixel sizes. Syntactic texture analysis is based on an analogy between the

Unsupervised Skin Lesion Classification and Matching

texels spatial relations and the structure of a formal language. A grammar is constructed for each texture class. The analysis is based on using the grammar to detect attributes and regions of interest.

There is also some newer work in texture recognition based on some work by Bela Julesz.
" Research on pre-attentive (early) vision [Julesz 81, Julesz and Bergen 87] shows that
human ability to recognize texture quickly is based mostly on textons, which are
elongated blobs (rectangles, ellipses, line segments, line ends, crossings, corners) that
can be detected by pre-attentive vision, while the positional relationship between
neighboring textons must be done slowly by an attentive vision sub-system. As a result
of these investigations, another group of methods has begun to appear, based on texton
detection, and texton density computation [Voorhees and Poggio 87, Ando 88].

In this research, skin mostly presented a weak texture, and statistical methods appeared to be the best fit to the data. Of the many algorithms available, the co-occurrence matrices seemed to be the best fit to the data. In addition, Matlab is extremely well suited to handle matrices, so the platform software made it a good choice as well. This method is based on a repeated occurrence (vs. some general characteristic) and this indicates rapid change for between pixels in a fine texture and slower change for coarse textures.

3.5.2 Co-occurrence Matrices

Interestingly, the development of texture analysis and co-occurrence matrices was sparked by Bela Julesz, as mentioned in the quote above, he developed the idea of textons, which he called the fundamental elements of vision. Julesz wasn't really a computer scientist...he was a network researcher at Bell labs and later a professor of psychology at Rutgers university. He was very interested in how human visual perception worked and introduced the notion of detecting texture based on second-order statistics. He originated the concept of looking at pairs of information to detect order.

This sparked computer scientists to create algorithms to operate on co-occurrence matrices, one of the early researchers was Robert Haralick. Its interesting to note how young computer science really is, that these early researchers are still working in the field. Often these texel patterns are referred to as Julesz ensembles. A texture, or a Julesz ensemble is described as an equivalent class of mini-images on a 2D plane that share equivalent statistics.

An image co-occurrence matrix is a record of pixel relationships, that is from one pixel to another in a grey level matrix. (Where the concept of duality comes from that runs through Julesz work.) The co-occurrence matrix can capture information about pixel relationships driven by distance between pixels and also by direction. So, for example, you could create a co-occurrence matrix of information based on pixels that are ten pixels apart, and to the left of the pixel of interest. Commonly the direction is expressed as North, South, East and West. A variety of these matrices can be created to synthesize a statistical picture of the texture in an image. See figure 3.5.1 for a simple example of how to create a co-occurrence matrix. Notice that the size of the co-occurrence matrix is driven by the highest grey level value in the original image matrix.

Unsupervised Skin Lesion Classification and Matching

Figure 3.5.1 - Graphic depiction of a simple co-occurrence matrix.

So in the depiction, the highest pixel value is five, so the co-occurrence matrix is five by five. The other crucial information is the distance, which tells the algorithm how far apart to look for pixel pairs, and direction. If this were a symmetric co-occurrence matrix, the direction would be both east and west...and in that case the co-occurrence matrix would have a ' 2 ' in position $(3,1)$ as well as position $(1,3)$.

Some pre-knowledge about the images being examined usually shapes the co-occurrence operators (direction and distance). For example, if you know you are looking at something with a definite direction, like trees in a forest or hair - that would produce very different matrices depending on direction. If you have a weak or blurry texture, you might want to view pixels farther apart to find better matches (i.e. stay inside individual texels.) Haralick [2] presented some definitive algorithms, which are considered standards now. Those algorithms are energy, entropy, maximum probability, contrast, inverse difference movement, correlation, and run length. Later work by Gose, et. al. defined another algorithm for measuring distance. These algoritms or feature extractors germane to this work are examined below.

Energy measures the evenness, or smoothness of an image. The theory is that, if there is a high count of pixels with the same values, then the matrix will have high counts for pixel groups. So when you add up all the counts in the co-occurrence matrix, the higher the value, the smoother the image. Images with rough or coarse textures will have smaller numbers because there will be smaller pixel combination counts. Where M is the co-occurrence matrix, the equation for Energy is:

$$
\text { Energy }=\sum M_{i y}{ }^{2}
$$

Unsupervised Skin Lesion Classification and Matching

In the equation for calculating Entropy (or the amount of disorder in the image) the probability of a matrix entry being incremented is summed. So if the total number of counts in the matrix is 1000 , and one pair of values gets a count of 10 , then the probability of the count being incremented in the next iteration is .01 . If the texture is fairly even, the entropy value will be high, indicating that the texture can be discerned visually (as opposed to a very disordered chaotic texture.). The equation for Entropy is:

$$
\text { Entropy }=-\sum p \log p
$$

The algorithm for weighted average absolute distance is measuring the distance of cooccurrence matrix M entries from the diagonal of the matrix. So for rough textures, you'll have a lot of combinations where there is a big difference in the pixel values reflected near the matrix edge (i.e. 1,5). However, if the texture is pretty smooth, distances will be smaller and will cluster near the diagonal. This algorithm tests the matrix looking for those trends. The formula is:

$$
\begin{aligned}
& d=\frac{1}{M} \sum|i-j| m_{i j} \\
& \text { where } \\
& M=\sum m_{l}
\end{aligned}
$$

The last feature extraction formula is for contrast. This analysis determines how much difference there is between pixels. This give some notion of local image variations. This formula is:

$$
\sum_{l, j}|i-j|^{k} P_{0 . d}^{\lambda}(i, j)
$$

Usually $\mathrm{k}=2$ and $\lambda=1, \phi=$ direction and $\mathrm{d}=$ distance.

Unsupervised Skin Lesion Classification and Matching

3.6 Other Work in Unsupervised Image Analysis

3.6.1 Overview

There is keen interest in being able to extract meaningful results from not just images, but from image databases. Technology has allowed us to create large databases of information, but there are not enough robust, accurate methods yet to make sense of all that data. This need can be anywhere from a commerical application to allow the consumer to select all images of a certain person or a certain event, or maybe more critically, to assess medical or scientific information from existing databases. Most systems accept some "steering" information to tune these extractions. Below are some samples of some of the work in this area.

For example, in a paper by Eli Saber and A. Murat Tekalp, "Integration of Color, Edge, Shape and Texture Features for Automatic Region-Based Image Annotation and Retrieval', they accept direction for keywords to assist in a search. Because the thrust of their work is more generic, their system has a guidance systems for developing keywords to direct the search (like the keyword "grass" can be assigned to images that contain a green color and grass texture.). Their application also allows users to determine if they want feature vectors from color, texture, and/or shape. While this system is automatic in the sense that it performs the search without tuning during the search (although they do provide the user with the ability to tune combinations of texture, shape, and color), it requires some intelligent intervention during the data indexing to create useful keywords.

In another paper, " Initial Results of Automated Melanoma Recognition" by H. Ganster, M. Gelautz, and A. Pinz both color segmentation and shape analysis of Epiluminescence Microscopy (ELM) are used to analyze color images. In this work, the authors use morphology and color segmentation to find the edge of skin lesions, but they don't apply any texture algorithms. In this research, they focused on the color components in the lesion, as malignant tumors present characteristic color variations, like deeper pigment near the edges and tiny dark spots.

In a final example, Dr. Scott Umbaugh presents his work on automatic skin tumor border identification in his book, Computer Vision and Image Processing, A Practical Approach using CVIPtools. The focus of this work, is to again use color segmentation to identify the tumor border, and assess the shape, since again, melanoma often presents characteristics that allow classification. For example, any lesion that has a very irregular border with protrusions and indentations is a concern, however in the material presented in the book, he didn't pursue any algorithms to analyze the results, as the focus was on the success of finding the border.

Algorithm Section

Application FlowChart

Unsupervised Skin Lesion Classification and Matching

Section IV : Automatic Lesion Classification

All of the work on skin lesion analysis reviewed so far appears to be focused on performing analysis on image databases of pre-diagnosed lesions, or enhancing searches into these image archives. According to Dr. Art Papier, of the University of Rochester Dermatology department, "If a patient says a mole is itching but the photo shows no change you still remove it...". This highlights the fact, that if a dermatologist is going to the trouble of using some extraordinary measure to evaluate the lesion, like viewing it with Epiluminescence Microscopy, they will probably remove it as part of the treatment. What is truly at stake here, is early detection. Skin cancers can be completely removed, and the patient cured theoretically every time if it is caught early.

Dr. Papier was also asked how often skin cancers were found on the back. Often this is the area of the body most often sunburned, and least likely to be detected if a melanoma did begin. He replied: "Frequently, very frequently". In addition, he pointed out that history is as important as the observable features, and that photographs had proven helpful in tracking lesions, which are usually very slow growing, so change can be hard to detect.

What this work attempts to do, is provide an automatic classifier, requiring no tuning or steering that will record ten feature vectors about the lesion. This could serve as an immediate tool for analysis, but more importantly as a tool for historical compares. In addition, the images for a small database were deliberately pulled from the web, to try to avoid building a solution that only worked on high-quality, high-resolution images. In addition, input photographs were taken with an average 32 mm camera and scanned in with a low-end scanner. Code was kept as simple as possible to try to avoid long processing times.

4.1 Morphological Operations

The first step is to isolate the lesion from the background. This was resolved through a trial and error period until a combination of close, open, and dilate operations were found that had good success in removing not only the skin texture, but quite often dark hairs if they were sparse. First the color image is converted to grayscale and then reversed via imcomplement. Next a disk shaped structuring element is created seven pixels wide. The following operations are then performed: two successive close operations, an open operation, and then ten successive dilations. Next the structuring element is reduced to three pixels in width (This is still disk shaped, that works well, since most lesions have rounded edges.) and three open operations are performed. Figure 4.1.1 demonstrates these operations on a basal cell carcinoma lesion with many thin, dark hairs.

Unsupervised Skin Lesion Classification and Matching

4.2 Image Border Processing

Since the application currently assumes the lesion is in the center of the image, some pains are taken to clear a certain percentage of the edge, to ease later processing, and to improve chances of a good segmentation. The mid point of the image is obtained by dividing the length and width of the matrix. Four points are calculated on the edge, called North, South, East, and West. In addition, the color at the mid point is compared to the color of the first pixel in the image (i.e. $\mathrm{m}(1,1,1)$. This color difference is compared to the average color of the pixels to check for a gradient change, as pixels are incremented toward the center in the four directions. The "creeping" in toward the center is to determine how much of that particular edge to remove. The movement stops when either, the color change is detected, the pointer has moved past ten percent of the image width or height, or a significant value change has been detected in the color value from the average pixel color in the chain. Once these depths have been determined, the routine changes the pixels beyond these boundaries to white, leaving a white frame around the image.

The next routine manually changes the lighter values to dark and vice versa. There is a Matlab function to do this, but this process allows for more flexibility in pixel values to be consider dark and which to be white. The routine attempts to determine which pixels have the highest value and turn those white and all others black. This is helpful for fainter images. In both the previous routine and this one, a dilate is performed using a very small structuring element to smooth away and last stray edges.

The massaged image from above is fed into a process that attempts to remove the white frame placed in the image by the previous operation. This algorithm expands the edge values slightly larger than the previous operation, turning all the pixels black - effectively merging them with the existing black background. The final step in the edge massaging is to reverse the image again, so the segmented lesion is now black on a white background.

The application now attempts to determine if the lesion has been segmented as one object. The next process uses a Matlab function called bwlabel. This routine will detect and number various regions, and return the number of segments it encountered. If the number is greater than 1 , the program will iteratively call imdilate to try to merge the segments. Once that is complete, the routine calls another Matlab function called imfill, which as it sounds, fills in small holes in an object. Lastly, the program checks to make sure there are some lesion pixels left, and the lesion itself wasn't considered a hole and filled in.

At this point, the lesion should be segmented well enough, and the background removed enough so that and edge detection routine can be applied. For this application, the sobel operator was used. Several operators were tested, but Sobel performed the most reliably and with good speed. At this point, the preprocessing is complete, and we should now have an edge, and can begin analysis for Shape, Color, and Texture.

Unsupervised Skin Lesion Classification and Matching

4.3 Shape Analysis

Interestingly, the shape feature values turned out to be two of the most reliable feature values. The first is a simple calculation. The object pixels are counted up and used for the area value of the compactness formula. The edge pixels are also counted up and squared, the edge pixel count is divided by the area/object pixel count to produce a compactness value.

The second shape algorithm is more complicated. The function expects to be passed the edge image. In this image all pixels are black except the edge pixels, which are white. The image is read in, and all the x and y coordinates for the white pixels are stored in and X and Y array. These arrays are then passed to another function that starts with the first pair in the arrays, and performs a closest neighbor search to order the pixels. Once that is complete, the first pixel pair is added to the arrays to close the gap, and allow Matlab to use the pixel arrays to plot the complete edge image.

Several very powerful Matlab functions are now used to get some metric of how irregular the border of the lesion is. First, the ordered X and Y arrays are fed into the convhull function. Next the arrays are fed into the polyarea function, which will provide an area value for the object. The area for the convhull object is also calculated. The original object's polygon area is divided by

Unsupervised Skin Lesion Classification and Matching

the convex hull polygon (We expect that to always be either bigger or possibly the same, but never smaller.)

$$
\frac{\text { Area_Original_image }}{\text { Area_Convex_Hull_image }}
$$

Since both of these metrics are calculations about percentages relating to the image itself, they don't need to be normalized to compare these values to other images. This gives us a little information about how rounded the object is, but especially about protrusions and indentations, which are edge anolomolies to watch for.

4.3 Color Analysis

The goal for both color and texture analysis, is to be able to focus on the pixels inside the lesion, and ignore the rest. This can be difficult in Matlab, because most data structures need to be in a rectangular matrix. To get around this problem, the function InPolygon was used. InPolygon requires that the X and Y coordinate values be passed in as separate arrays for an input image. So how do you do that? If you look at a simple matrix, you can see that the X values will be a repeating series as the matrix is scanned horizontally. For example, in the tiny

$$
\begin{aligned}
& (1,3)(2,3)(3,3) \\
& (1,2)(2,2)(3,2) \\
& (1,1)(2,1)(3,1)
\end{aligned}
$$

matrix above, the X array would be $\left[\begin{array}{llllll}1 & 2 & 3 & 1 & 2 & 3\end{array} 123\right.$ 3. This is accomplished very easily and very quickly in Matlab using the colon operator, in this case it would be $X=[1: 3]$. In a flash Matlab will create the little matrix [lllllll 1233$]$. A simple loop, the size of the number of rows will quickly create the X array. For the Y solution is not as easy. Matlab has a function called repmat, that will generate repeating matrices. This was done using a loop, and turned out to be extremely fast. Using our toy example again, what we'd want Matlab to generate would be the series [1111222333].

These X and Y arrays are again ordered, and passed in to inpolygon. A slick Matlab function that checks each coordinate, and for those inside the image edge, will pass back a ' 1 ' - for coordinates outside of the image edge, the function passes back a zero. Using this output, it's now possible to only consider pixel values that have be identified as inside the lesion.

For color analysis, using the coordinates from the inpolygon array, the algorithm maps into the color image and splits each color pixel into the RGB values. 255 are added to the green pixels, and 510 is added to the blue pixels. This allows the algorithm to uniquely identify each color, as the values are added together to allow counting of how many unique colors there are in an image. The sums are added into a "color bin" array. (Otherwise, a color composed of 105 (R) 255 (G) 68(B), and another, $68\{\mathrm{R}) 105(\mathrm{G}) 255(\mathrm{~B})$ would appear to be the same color.)

The process also looks at the RGB values to try to determine if the pixel is red, black or green. Pixels with all three color planes with a very low value would appear black in the image. If the red to green ratio is less than .50 and the red to blue ration is less than .50 , the pixel would appear red. These two colors are very often evident in a cancerous skin tumor. Lastly, it can be of value if there is pink in a lesion, often this is an indicator of regression, where the body is able to partially heal some of the damage from the cancer. In these cases, pink pixel values have a very high red value, above 195, and the red and blue values are between 87 and 90 . Again, these measurements don't need to be normalized, because they are percentages of the image.

4.4 Texture Analysis

The same array out of inpolygon can be used for texture analysis. The texture values are the one set of feature vectors that would need to be normalized to allow comparison's between images, however the approach in this routine is to create a sub-matrix from the center of the image of a set size for every image. In this series of experiments, the matrix size was 129 X 129. This submatrix was created by first finding the minimum X, Y values in the inpolygon array. This value was then used to offset the output array values. If the lesion area is smaller than $129 \mathrm{X129}$, the application uses the imcrop function to select pixels from the middle of the image and creates a mini- texel. This is then used to fill in any small areas of white space.

Once the submatrix is created, the process then reduces the pixels to 10 grey level values. These values are all shifted up by one, as the grayslice Matlab function does produce zero values, but later we'll want to use those grey level values for indexing into an array. With that in mind, the gray levels are all shifted up by one.

In the last texture routine, the co-occurrence matrix is created, using a distance of 10 pixels, and a direction east. This resulting matrix is then passed to the energy, entropy, distance, and contrast functions.

Unsupervised Skin Lesion Classification and Matching

4.5 Classification

This is a simple routine crafted based on the results from processing the image database. Ranges were observed for the leading feature vectors, and a simple decision tree was devised to assign the image one of 3 ratings: red, amber or green. The ratings are based only on the most reliable feature vectors: number of colors, the ratio for edge area to convex hull area, texture distance, and compactness. Ranges were determined for melanomas in the database, and set for these three comparisons.

4.6 Database Read, Match and Write

The next process is determined by whether the process is being run to enter data into the database or to evaluate an input image.

If the intent is to enter the data into the database, a simple script is called to write the file name, diagnosis, and the 10 calculated values to the Matlab file. The data is written with double precision, except for the character data, and the process terminates.

If the purpose of the process is to evaluate an input image against the database, the read/match routine is called. This routine loops through the records in the database and compares the database values to the input computed values. In this approach, the values for number of colors, compactness, image edge to convex hull edge ratio, texture entropy, and texture distance are all summed together, for both the input and the database image values. For the most part, this causes number of colors (the largest number) to be the arbiter of the match. (Interestingly, using a voting scheme checking each value, turned out to not be as effective. In this routine, the values are each checked against a minimum value. If the new value is smaller (i.e. the database feature vector is closer to the input value, the new value becomes the new value. This voting routine is called dbReadMatchVote.m) In addition, a min-value field is kept to determine which of the database records had the total closest to the output record. After this comparison is done, the "matching" image - or rather the image with the closest value to the input image is compared to minimum /maximum values to ensure that the match is reasonably close. The minimum and

Unsupervised Skin Lesion Classification and Matching

maximum ranges plus or minus twenty percent of the input sum. For images that don't find a match in this range, the application returns 'UNKNOWN'.

All code for these algorithms can be found in appendix B.

Section V : Results and Conclusions

5.1 Images that Segmented well

For the most part, the application is finding the lesions and is able to process feature vectors successfully. While, often the edge is not found precisely, the original shape is maintained well enough to allow meaningful examination of the lesion. Below are a sample of some of the lesions successfully segmented.

figure 5.1.1
melanoma image

figure 5.1.2
Image during morphological processing, note that the skin texture has been dilated out.

figure 5.1.3

[^9]
Unsupervised Skin Lesion Classification and Matching

Segmented image. Some lighter areas are missed by The algorithm, but the character of the lesion is captured.

figure 5.1.4 ${ }^{*}$
The interesting thing to me about this edge is that the more raised portion of the lesion has been well picked out, actually giving the lesion more definition than was noticable in the original image.

figure 5.1.5**
This image segmented particularly well, despite the numerous hairs in the background, and skin texture.

[^10]
Unsupervised Skin Lesion Classification and Matching

figure 5.1.6*
This lesion was segmented successfully, even thought the image is off center and very close to the border. In this case, the morphological processing artificially expanded the border of the lesion slightly, but again, the general characteristics of the lesion are captured.

figure 5.1.7 **
This lesion is an example of what is called a blue nevus. It is a benign mole with a characteristic blue coloring. In this image, the edge-trimming software was able to avoid segmenting the ruler at the bottom of the image and locate the lesion.

The next set of images were procured with a Cannon EOS Rebel G camera and scanned on a low-end scanner. The first image is slightly out of focus. There was some processing done on the image to lighten the noticeable freckles, as the application is designed for a central lesion with a fairly uniform background. Interestingly as well, this birthmark classified as "Red", (meaning it has some high values for some of the characteristics of melanoma.), and does have three of the characteristics: an irregular shape, much larger than a pencil eraser, and noticable texture. In many of the images I've viewed, lesions diagnosed as melanoma did look like freckles, which makes it that much more challenging for dermatologists to accurately diagnose, or even detect in the first place, that a lesion is becoming a problem.

[^11]The application does a good job of segmenting this lesion as seen in figure 5.1.8.

figure 5.1.9
This is a lesion captured with the Cannon with a flash in daylight. Again, the edge is imperfect, but the region of interest has been identified, and the shape appears reasonable.

Unsupervised Skin Lesion Classification and Matching

figure 5.1.10
This is a small dysplastic mole. The application located the lesion well, but the irregular border is missed. However, the values captured do mark is as a Warning.
Table 5.1.1 presents the results of the images processed for the database. Each column is subtotaled with the average value. This was used for the image matching in the database.

Table 5.1.2 captures the feature values for the input images, which images they matched in the database. It also indicates how they classified based on different feature value ranges. It is interesting to note that the two suspect images in the benign group did classify as AMBER (requires investigation).
Some of those results follow, the complete match ups can be found in Table 5.1.2.

figure 5.1.11

Mole taken with the Cannon

Mole from the database *

While these images are different in color, they appear to match well on the other feature vectors for shape and texture.

Dysplastic mole taken with Cannon

Congential nevus from database **
figure 5.1.12
These two images are similar in compactness and are also both very dark.

[^12]| | Texture_E Texture_ | | Texture |
| ---: | ---: | ---: | :--- |
| Texture_Energy | ntropy | Distance | Contrast |
| $60,205,822$ | -4.1214 | 0.5577 | $1.7663 \mathrm{E}+11$ |
| $112,237,037$ | -2.1851 | 0.2704 | $1.6541 \mathrm{E}+12$ |
| $70,324,437$ | -3.9 | 0.5578 | $3.3597 \mathrm{E}+11$ |
| $41,728,015$ | -4.505 | 0.6647 | $1.9341 \mathrm{E}+11$ |
| $85,328,788$ | -3.5698 | 0.503 | $7.7397 \mathrm{E}+11$ |
| $131,103,608$ | -2.2179 | 0.2279 | $1.9152 \mathrm{E}+12$ |
| $132,511,281$ | -1.6475 | 0.2512 | $2.0293 \mathrm{E}+12$ |
| $212,523,270$ | -0.9736 | 0.0522 | $3.4795 \mathrm{E}+12$ |
| $88,815,860$ | -2.8875 | 0.2661 | $6.2302 \mathrm{E}+12$ |
| $115,635,078$ | -2.3991 | 0.2643 | $1.0710 \mathrm{E}+12$ |
| $104,786,816$ | -2.3953 | 0.2009 | $9.1765 \mathrm{E}+12$ |
| $104,786,816$ | -2.3953 | 0.2009 | $9.1765 \mathrm{E}+11$ |
| $68,074,257$ | -3.8715 | 0.5361 | $3.3820 \mathrm{E}+11$ |
| 44328150 | -4.5462 | 0.636 | $6.0894 \mathrm{E}+10$ |
| $63,323,395$ | -3.6573 | 0.4285 | $1.2722 \mathrm{E}+11$ |
| $63,323,395$ | -3.6573 | 0.4285 | $1.2722 \mathrm{E}+11$ |
| $162,805,816$ | -1.4924 | 0.0769 | $2.6243 \mathrm{E}+12$ |
| $79,961,308$ | -3.0737 | 0.2578 | $5.9509 \mathrm{E}+11$ |
| $98,891,783$ | -2.4832 | 0.1791 | $9.6944 \mathrm{E}+11$ |
| $83,245,205$ | -3.0573 | 0.2953 | $4.7264 \mathrm{E}+11$ |
| $93,734,643$ | -3.009 | 0.3968 | $8.2125 \mathrm{E}+11$ |

$8.2125 E+11$
$96,079,751-2.954543 \quad 0.345338 \quad 1.6233 E+12$
$15.00164286 \quad 0.922786$

Area

1996.0

 Number of
 ©
苋
0
O
O
E basalpig bcc_007 bcc_12
 dysnev2 n
0
0
0
0
0 blurrymel $\stackrel{\bar{\sigma}}{\stackrel{\rightharpoonup}{c}}$ mel10 mel11 mel12 mel12 mells $\stackrel{\odot}{\stackrel{\circ}{0}}$ $\stackrel{N}{\Phi}$ $\stackrel{\sim}{\circ}$ mel21

Image Name	Diagnosis	\# ${ }_{\text {Colors }}$	\% Red	\%Black	\%Pink	Compactness	Area Ratio	Texture Energy	Texture_E ntropy	Texture Distance	Texture Contrast	FWL	Match
jhet1	?	404	0.0179	0	0	10.9987	0.965	151,972,080	-1.7943	0.1151	$2.4296 \mathrm{E}+12$	A	mel11
jhet3	?	288	0.0362	0	0	11.9588	0.9884	232,745,954	-0.6751	0.0436	$3.8208 \mathrm{E}+12$	G	ong2_nevus
jhet4	?	396	0.0172	0	0	11.6799	0.9743	158,834,648	-1.6824	0.0985	$2.5501 \mathrm{E}+12$	A	mel11
jhet4_change	?	406	0	0	0	11.7571	0.9711	122,641,430	-2.1561	0.1762	$1.8846 \mathrm{E}+12$	A	mel11
jhet8	?	386	0.1129	0	0	10.6689	0.9875	223,416,610	-0.8395	0.051	$3.6627 \mathrm{E}+12$	G	dark_mel
khmm7	?	628	0.1251	0.0015	0	14.3768	0.9359	64,583,421	-4.5517	1.1002	$1.5575 \mathrm{E}+11$	R	bcc_12
khmm7_chang		633	0.408	0.3193	0	21.2393	0.9721	211,626,596	0.5961	0.0342	$3.4779 \mathrm{E}+12$	A	bccpig
pywr	?	330	0	0	0	10.6564	0.9894	218,486,906	-0.8765	0.0578	$3.5725 \mathrm{E}+12$	G	mole3
pywr_change	?	356	0.01	0	$4.15 \mathrm{E}-04$	11.9695	0.986	209,200,120	-1.0377	0.0773	$3.3994 \mathrm{E}+12$	A	cong_nevus
dyspnev4	dysplastic	237	0.4516	0	0	10.9754	0.9802	132,990,977	-1.7501	0.1858	$2.1123 E+12$	G	nevus4s
irreg_nevus	dysplastic	533	0.2122	0.005	0	12.1668	0.9558	48,152,940	-3.9926	0.4705	$8.3345 \mathrm{E}+10$	R	mel15
mel17	melanoma	614	0.0015	0.0014	0	15.3659	0.9441	124,149,983	-2.6652	0.2858	$2.1544 \mathrm{E}+12$	R	bcc_12
mel1b	melanoma	589	0.0059	0	0	20.658	0.7938	45,929,563	-4.292	0.6133	$3.4589 \mathrm{E}+11$	R	MM-002-low
mel22	melanoma	640	0.0346	1.7044	0	12.0294	0.9748	105,668,026	-2.9037	0.2948	$1.5173 \mathrm{E}+12$	A	bcc_12
mel25	melanoma	321	0.4771	0	0	13.2903	0.9439	159,246,070	-1.6007	0.1154	$2.5473 \mathrm{E}+12$	A	mel12
mel26	melanoma	421	2.64E-04	0	0	11.8634	0.9755	175,089,632	-1.5821	0.1417	$2.8270 \mathrm{E}+12$	A	mel8
mel27	melanoma	596	0.0552	0.0111	$9.55 \mathrm{E}-05$	20.5068	0.8632	57,170,406	-4.5175	0.7805	$4.5703 \mathrm{E}+11$	R	mel16c
mel28	melanoma	355	6.46E-04	0	$3.23 \mathrm{E}-04$	12.3423	0.9584	192,529,200	-1.253	0.1047	$3.1260 \mathrm{E}+12$	R	cong_nevus
mel3	melanoma	498	0.5748	0.5723	0	16.0729	0.9587	135,786,868	-2.2265	2.7637	$1.1077 \mathrm{E}+12$	R	dysnev2
cmpd_nevus	nevus	265	0.0032	0	0	11.3809	0.9894	215,026,416	-0.8934	0.0625	$3.5185 \mathrm{E}+12$	G	bcc-007
sebker2s	nevus	326	0	0	0	10.8834	0.9821	92,824,284	-2.8023	0.3355	$1.4966 \mathrm{E}+12$	G	mel12
sebker3s	nevus	639	0.4524	0	0.0024	10.9783	0.9801	45,545,635	-4.0823	0.5321	$1.5568 \mathrm{E}+11$	A	bcc-_12
wart	nevus	373	0.0033	0	0	11.9477	0.9607	148,232,526	-1.8036	0.1175	$2.2319 \mathrm{E}+12$		mel10

Unsupervised Skin Lesion Classification and Matching

figure 5.1.13

input image (melanoma) *

While these images are positioned differently, they actually are very similar in shape, color and texture.

5.2 Types of Images That Did Not Segment Well

In table 5.2.1, the results of the overall attempts to segment images from both the web and locally obtained are shown. The images below indicate some of the issues encountered in identifying the region of interest. In the first image, its clear that a dark shadow on the lower portion of the image confused the segmentation software.

figure 5.2.1 ${ }^{\text {**^ }}$
Melanoma, background shadowed in lower part of image

[^13]| 通 | Diagnosis | Quality of Edge Detected | Problem |
| :---: | :---: | :---: | :---: |
| blue2_nevus.jpg | nevus | OK | |
| cong2_nevus.jp! | ! nevus | OK | |
| dark_mel.jpg | melanoma | OK | |
| dysnev1.jpg | dysplastic | OK | |
| dysnev2.jpg | dysplastic | OK | |
| dysnev3.jpg | dysplastic | OK | |
| dyspnev4.jpg | dysplastic | OK | |
| irreg_nevus.jpg | dysplastic | OK | |
| jhet1.jpg | nevus | OK | |
| jhet3.jpg | nevus | OK | |
| jhet4.jpg | nevus | OK | |
| jhet4_change.jp! | dysplastic | OK | |
| khmm7_change | dysplastic | OK | |
| mel10.jpg | melanoma | OK | |
| mel11.jpg | melanoma | OK | |
| mel15.jpg | melanoma | OK | |
| mel16c.jpg | melanoma | OK | |
| mel17.jpg | melanoma | OK | |
| mel1b.jpg | melanoma | OK | |
| mel21.jpg | melanoma | OK | |
| mel22.jpg | melanoma | OK | |
| mel25.jpg | melanoma | OK | |
| mel26.jpg | melanoma | OK | |
| mel27.jpg | melanoma | OK | |
| mel28.jpg | melanoma | OK | |
| mel29.jpg | melanoma | OK | |
| mel3.jpg | melanoma | OK | |
| mel6.jpg | melanoma | OK | |
| mole1.jpg | nevus | OK | |
| mole3.jpg | nevus | OK | |
| nevus2s.jpg | nevus | OK | |
| nevus3s.jpg | nevus | OK | |
| nevus4.jpg | dysplastic | OK | |
| nevus7s.jpg | nevus | OK | |
| pywr_change.jp! | dysplastic | OK | |
| pywr2.jpg | nevus | OK | |
| sebker1s.jpg | sebherractic keratosis | OK | |
| sebker2s.jpg | sebherractic keratosis | OK | |
| sebker3s.jpg | sebherractic keratosis | OK | |
| wart.jpg | verruca | OK | |
| jhet8.jpg | nevus | OK | |
| bcc_007.jpg | basal cell carcinoma | good | |
| blurrymel.jpg | melanoma | good | |
| cong_nevus | nevus | good | |
| khmm7.jpg | pigmented birthmark | good | |
| mel12.jpg | melanoma | good | |
| mel14.jpg | melanoma | good | |
| basalpig | basal cell carcinoma | Very Good | |
| bcc_12.jpg | basal cell carcinoma | Very Good | |
| cmpd_nevus | nevus | Very Good | |
| mel2.jpg | melanoma | Very Good | |
| mel7.jpg | melanoma | Very Good | |
| MM-002-low | basal cell carcinoma | Very Good | |
| roundmel.jpg | melanoma | Very Good | |
| bcc_17.jpg | basal cell carcinoma | poor | white glare in lesion segments out |
| bcclow/jpg | basal cell carcinoma | poor | required a different structuring element |
| germbcc.jpg | basal cell carcinoma | poor | very red background, orange lesion |
| img0089.jpg | melanoma | poor | very faint lesion - light orange |
| mel1.jpg | melanoma | poor | shadowed background |
| mel13.jpg | melanoma | poor | hole fill routine removed lesion |
| mel8.jpg | melanoma | poor | shadowed background |
| mole2.jpg | nevus | poor | thick dark hair in background |
| sqCCa001.jpg squ | squamous cell carcino | poor | shadowed background |
| uneven_mel.jpg m | melanoma | poor | white glare in lesion segments out |

Unsupervised Skin Lesion Classification and Matching

In the next image, it can be seen that there is a great deal of white glare in the image.

figure 5.2.2*
The glare in the center of this image and the speckles of white light in the background caused the segmentation to fail

figure 5.2.3
This image represents the third problem that caused the segmentation to fail, because there areas of lighter shade within the lesion, the morphological processes failed to completely fill the a hole inside the lesion, and also to join another region to the whole. Its worth noting, however, that the application would note this as a region to investigate further, which is valuable, as this is a melanoma image.

[^14]
Unsupervised Skin Lesion Classification and Matching

5.3 Tracking History

In order to determine whether the Application would truly be useful in tracking changes in a lesion, several of the input images were modified and fed back through the application to determine what changes would be recorded, and if this would affect classification. The results are below:

figure 5.3.1
Original
Modified
Note that some additional colors were applied to the modified version. The table below indicates the feature values for the two images.

Feature	Original	Modified
Number of colors	$\mathbf{6 2 8}$	$\mathbf{6 3 3}$
Percent Red	.1251	.408
Percent Black	.0015	.3193
Percent Pink	0	0
Compactness	$\mathbf{1 4 . 3 7 6 8}$	$\mathbf{2 1 . 2 3 9 3}$
Area Ratio	.9359	.9721
Texture Energy	$\mathbf{6 4 5 8 3 4 2 1}$	$\mathbf{2 1 1 6 2 6 5 9 6}$
Texture Entropy	-4.5517	$\mathbf{- . 5 9 6 1}$
Texture Distance	$\mathbf{1 . 1 0 0 2}$	$\mathbf{. 0 3 4 2}$
Texture Contrast	$\mathbf{1 . 5 5 7 5} \mathrm{e}+\mathbf{1 1}$	$\mathbf{3 . 4 7 7 9}+\mathbf{1 2}$

As can be seen, there are significant value changes that can be captured, even though viewing the image the changes are subtle and could be missed.
figure 5.3.2
Original
Modified

Feature	Original	Modified
Number of colors	330	$\mathbf{3 5 6}$
Percent Red	0	.01
Percent Black	0	0
Percent Pink	0	$04.15 \mathrm{e}-04$
Compactness	10.6564	$\mathbf{1 1 . 9 6 9 5}$
Area Ratio	$\mathbf{. 9 8 9 4}$.986
Texture Energy	218486906	$\mathbf{2 0 9 2 0 0 1 2 0}$
Texture Entropy	-.8765	-1.0377
Texture Distance	.0578	.0773
Texture Contrast	$3.5725 \mathrm{e}+\mathbf{1 2}$	$\mathbf{3 . 3 9 9 4 e + 1 2}$

Again, this table indicates measurable changes that could be otherwise missed. In addition, the classifier rated the modified image as Amber (warning). The original image was rated Green (benign).

Unsupervised Skin Lesion Classification and Matching

Section VI : Conclusions

6.1 Summary

Much of the segmentation issues that were encountered in this work have already been overcome in the field. Algorithms could be easily employed to reduce glare, lighten shadows, and increase contrast in an automatic fashion. In addition, many applications use color to segment the images, and that is more tolerant towards changes in intensity. As table 6.1.1 demonstrates, approximately 84% of the images segmented well enough to allow data capture. That percentage could easily be improved with more robust background handlers. In addition, the failures usually still segemented out part of the lesion in question and would be able to at least draw attention to the region of interest.

It devolved that number of colors, compactness, the convex hull / edge area ratio, texture energy, and texture_distance turned out to be most obvious indicators of a lesions characteristics. The red, black and pink metrics did not turn out to be helpful, in fact where those numbers did register, particularly red, usually turned up in the benign lesions. These capture techniques could be refined to more accurately capture this color information.

In the database matching routine, where an input image is matched against the database, it became apparent that the choice of database images was important to get meaningful matchings. If the database contains many melanomas that look a lot like a normal mole, the results returned may not be especially helpful. Using both a voting scheme and a scheme that added values together (which turned out to be governed by match on number of colors) the number of colors match provided better results. Clearly, this requires better turning of both database image selection, and matching criteria. One obvious improvement would be to weight the feature values, so that a match on the percent red, for example, carried less value than a match number of colors, which was a better indicator.

I think there is merit here, for an unsupervised system to assist dermatologists, particularly those who are using some kind of image capture now. Some tweaking to the system sped up the processing, so that for most images, it only takes about 60-180 seconds. Images taken by a professional will likely be of a reasonable quality, and most likely intended for image tracking, and probably taken from a similar aspect. At a minimum, the automatic classification could be an assist for the dermatologist, seeing many patients a day, especially in sunny climates.

Unsupervised Skin Lesion Classification and Matching

Section VII : Future work

I think there are many opportunities to grow this work. The next logical step would be to work on improving the background algorithms to address the three issues discussed. This would probably boost the segmentation success into the 90 percent level.

Its also possible that the application could be enhanced to be able to process more than one region in an image. This would support processing of more types of skin ailments. The system could also have a polygon checker to determine if the edge is complete to test the success of the segmentation. Several flavors of morphological structuring elements and iteration of the close and open operations could be devised to allow mulitiple processing to improve segmentation results.

It also occurred to me that one of the most sensitive issues for a patient and dermatologist is someone who has a dysplastic nevus. Very often, in the images I encountered these turned out to be rectangular in shape, and usually had at least one corner....so a corner finding algorithm on the edge would probably greatly improve the classification of this type of lesion.

I think it would also be beneficial to use a real database...the input/output functions provided by Matlab are workable, but not friendly...the initial processing could be performed in Matlab, and the files exported to another language for loading into a database. This would also make it easier for the user to search and retrieve independantly.

Its also possible that this work could have application for other images...for example analysis of wounds to access both healing and treatment. An important component to determine wound status is the amount of necrotic tissue, which color analysis could track. In addition, image history analysis might help determine how healing is progressing.

When I began this work, I was thinking that possibly this application could be web enabled, allowing users of the world wide web to load images up for analysis. However, when I hinted at this sort of use Dr. Papier mentioned that there might be onerous liability insurance, since the great risk is that if a cancer did get missed, whoever supported the website could get sued. I think he's right, and it's a sad commentary on our society, but perhaps if this tool is at the disposal of professionals it might make early detection a little easier.

However, far and away, I think the most important contribution of this application is that it can be a tool for tracking mole change over time. This appears to be an area where the software is not available, and where it could provide an critical link in assisting physicians in discovering a cancer, and hopefully in an early stage.

Unsupervised Skin Lesion Classification and Matching

End Notes

1.http://www.cancer.org/docroot/CRI/content/CRI_2_4_1X What are the key statistics for melanoma 50.asp?sitearea=\&level=

2. http://unisci.com/stories/20013/0816013.htm "How Precancerous Moles Progress to Deadly Melanoma", UniSci

3. http://www.cs.bham.ac.uk/-exc/Research/Papers/miua2001 marc.pdf " SIAscopy assists in the Diagnosis of Melanoma by Untilizing Computer Vision Techniques to Visualize the Internal Structure of the Skin", Moncrieff, Marc Addenbrooke Hospital, Cambridge UK
4.

http://www.cancer.org/docroot/MED/content/MED 2 1X_Moles_On_the_Skin_Can_Foretell_a_Person_s _Risk_of_Melanoma.asp
5. http://www.digitalderm.com/Yale Lecture.pdf "Early Melanoma Detection", Grichnik, James M., Yale University/ Fujisawa Lectureship Series in Dermatology.
6.
http://www.cancer.org/docroot/NWS/content/NWS 1_1x_Melanoma_Can_Return_Many_Years_After_Tr eatment.asp
7. Lee, Tim Kam. "Measuring Border Irregularity and Shape of Cutaneous Melanocytic Lesions", The University of British Columbia, Doctoral Thesis, 2001, pages 8-9.
8. http://unisci.com/stories/20022/0515024.htm Daily University Science News. May 15, 2002.
9. Lee, Tim Kam. "Measuring Border Irregularity and Shape of Cutaneous Melanocytic Lesions", The University of British Columbia, Doctoral Thesis, 2001, page 9.
10. Moncrieff, Marc, Cotton, Symon, Hall, Per, Schiffner, R., Lepski, U. Claridge, Ela. " SIAscopy Assists in the Diagnosis of Melanoma by Utilizing Computer Vision Techniques to Visualize the Internal Structure of the Skin", Addenbrooke Hospital, Cambridge, UK, Astron Clinica, UK, University of Birmingham, UK, Department of Dermatology, University of Regensburg, Germany. htttp://216.239.51.100/search?q=cache:z57DEj4yFJsC:www.cs.bham.ac.uk/~exc/Research/Papers/miua200 1_marc.pdf+SIAscopy+assists+in+the+diagnosis+of+melanoma\&hl=en\&ie=UTF-8

1. Barber, C.Bradford, David P. Dobkin, Hannu Huhdanpaa. "The Quickhull Algorithm for ConvexHulls", ACM Press NY, NY, pages 469-483, December, 1996.
2. Swain, Michael, J., Dana H. Ballard. "Color Indexing". The International Journal of Computer Vision. Kluwer Academic Publishers Hingham, MA, USA, page 12, November, 1991.
3. Swain, Michael, J., Dana H. Ballard. "Color Indexing". The International Journal of Computer Vision. Kluwer Academic Publishers Hingham, MA, USA, page 12, November, 1991.
4. Sonka, Milan, Vaclav Hlaval, Roger Boyle. Image Processing, Analysis, and Machine Vision. PWS Publishing, 511 Forest Lodge Road, Pacific Grove, CA 93950, page 646, 1999.
5. Sonka, Milan, Vaclav Hlaval, Roger Boyle. Image Processing, Analysis, and Machine Vision. PWS Publishing, 511 Forest Lodge Road, Pacific Grove, CA 93950, page 649, 1999.

Bibliography

1. Argenziano, Giuseppe MD, Gabriella Fabbrocini, MD, Paolo Carli, MD, Vincenzo De Giorgi MD, Elena Sammarco, MD, Mario Delfino, MD, "Epiluminescence Microscopy for the Diagnosis of Doubtful Melanocytic Skin Lesions", Arch Dermatol, 1998;134:1563-1570.
2. Bach, J.R., S. Paul, R. Jain, "A Visual Information Management System for the Interactive Retrieval of Faces", IEEE transactions on Knowledge and Data Engineering, vol 5, 619-628, August 1993.
3. Barber, C. Bradford, David P. Dobkin, Hannu Huhdanpaa, " A Quickhull Algorithm for Convex Hulls", The ACM Digital Library, December 1996.
4. Canosa, Roxanne. "Analysis of Textured Regions Based on Gray Scale Co-occurrence Matrices", Computer Vision project, Rochester Institute of Technology, May 2000.
5. Casper, Jennifer, Tammy Williams, Texture Analysis and Tissue Segementation of Cryosection Images, Technical Report, Visible Human Project, Department of Computer Science, University of Wisconsin-La Crosse, La Crosse, WI 54601.
6. Cohen, Scott, "Finding Color and Shape Patterns in Images", PhD Thesis, Stanford University, Computer Science Department, Stanford University, Standford CA 94305, May 1999.
7. Chahir, Youssef, Liming Chen, "Searching Images on the Basis of Color homogeneous Objects and Their Spatial Relationship", Journal of Visual Communication and Image Representation 11, 302-326, 2000.
8. Deng, Yining, B. S. Manjunath, " Unsupervised Segmentation of ColorTexture Regions in Images and Video", IEEE Transactions on Pattern Analysis and Machine Intelligence, vol 23, no 8, August 2001.
9. Ganster, H., M. Gelautz, A. Pinz, M.Binder, H.Pehamberger, M.Bammer, J.Krocza, " Initial Results of Automated Melanoma Recognition", Austrian Research Center Seibersdorf, A-2444 Seibersdorf, Austria.
10.Gevers, Theo, Sennay Ghebreab, Arnold W.M. Smeulders, "Color Invarient Snakes", ISIS, University of Amsterdam, Kruislaan 4031098 SJ Amsterdam, The Netherlands. (gevers@wins.uva..n1)
11.Gevers, Theo, C.A. Groen, "Segmentation of Color Images", In proceedings of $7^{\text {th }}$ Scandinavian Conference on Image Analysis, 1991.
12.Grichnik, James M. M.D., "Early Melanoma Detection", Yale University/ Fujisawa Lectureship Series in Dermatology.
13.Hanselman, Duane, Bruce Littlefield, Mastering Matlab 5, A Comprehensive Tutorial and Reference, Prentice Hall, Upper Saddle River, New Jersey 07458, 1998.
14.Haralick, Robert, M. "Statistical and Structural Approaches to Texture", Proceedings of the IEEE, v 67, n 5, pp 786-804.
15.Kliot Michael, Ehud Rivlin, "Invarient-based Shape Retrieval in Pictorial Databases". Computer Vision and Image Understanding, Vol 71, no 2 August, pp 182-197, 1998.
16.Lee, Tim K., M. Stella Atkins, " A New Approach to Measure Border Irregularity for Melanocytic Lesions". This paper can be found on Dr. Atkins site at http://www.cs.sfu.ca/people/Faculty/Atkins/papers/tim.spie00.doc
17.Lee, Tim Kam, "Measuring Border Irregularity and Shape of Cutaneous Melanocytic Lesions", Doctoral Dissertation, Simon Fraser University, January 2001.
18.Moncrieff, Marc, Symon Cotton, Per Hall, R. Schiffner, U. Lepski, Ela Claridge, " SIAScopy Assists in the Diagnosis of Melanoma by Utilizing Computer Vision Techniques to Visualise the Internal Structure of the Skin:, University of Birmingham, UK, Department of Dermatology, University of Regensburg, Germany.
19.Partio, Mari, Bogdan Crameriuc, Moncef Gabbouj, Ari Visa, "Rock Texture Retrieval using Gray Level Co-Occurrence Matrix", $5{ }^{\text {th }}$ Nordic Signal Processing Symposium, Norway, October 2002.
20.Patel, Wima L., Jose F. Arocha, Melissa Diermeier, Robert A. Greenes, Edward H. Shortliffe, " Methods of Cognitive Analysis to Support the Design and Evaluation of Biomedical Systems: The Case of Clinical Practice Guidelines", Academic Press, March 13, 2001.
21.Pauwels, E.J., G. Frederix, "Clustering Strategies for Perceptual Grouping, ESAT-PSI, Dept of Electrical Engineering, K.U. Leuven K. Mercierlaan 94, B-3001 Leuven, Belgium, June 19, 1998.
22.Roning, Juha, Jukka Kontinen, "Measurement of the Area of Involvement in Skin Disease", Proceedings of Intelligent Robots and Computer Vision XV: Algorithms, Techniques, Active Vision, Material Handling (SPIE vol 2904), 18-22 November 1996 Boston, Massachusetts, pp 382-388.
23.Saber, Eli, A. Murat Tekalp, "Integration of Color, Edge, Shape and Texture Features for Automatic Region-Based Image Annotation and Retrieval", Journal of Electronic Imaging, Vol 7, no 3, July 1998.
24.Seul, Michael, Lawrence O'Gorman, Michael J. Sammon, Practical Algorithms for Image Analysis, Cambridge University Press, 40 West $20^{\text {th }}$ Street, New York, NY 10011-4211, 2000.
25.Tao, Bo, Bradley W. Dickinson, "Texture Recognition and Image Retrieval Using Gradient Indexing", Journal of Visual Communication and Image Representation 11, 327-342, 2000.
26.Tong, Arther K.F, MD, Thomas B. Fitzpatrick MD, "Neoplasms of the Skin", American Cancer Society downloads: www.cancer.org/downloads/PUB/ cancer_medicione_e.5_toc.pdf
27.Umbaugh, Scott, Computer Vision and Image Processing, Prentice Hall, Inc Upper Saddle River, NY 07458, 1998.
10. Vicario, Enrico, Image Description and Retrieval, Plenum Press, 233 Spring Street, New York, NY 10013, 1998.
11. Wesolkowski, Slawo, Ed Jernigan, " Color Edge Detection in RGB Using Jointly Eclucidan Distance and Vector Angle", Vision Interface '99, Trois-Rivieres, Canada, 19-21 May.
12. Williams, Paul Stephan, Mike D. Adler, "Generic Texture Analysis Applied to Newspaper Segmentation", The University of Western Australia, Nedlands W.A. 6009, Australia.

Skin Lesion Analysis via Image Processing and Neural Net Matching

Appendix A

The pages that follow contain the images from the sources indicated in Section II.

- The first page contains images collected by me.
- The next page is from State University of California at Davis http://matrix.ucdavis.edu/tumors.html .
- Next is University of Florida : The Molehill part of the Health Science Center. Images courtesy of Dr. Frank Flowers, MD. http://www.health.ufl.edu/molehill/molehill.html
- Following that is The University of Iowa
http://tray.dermatology.uiowa.edu/Dermlmag.htm has an absolutely impressive image database. Approximately seventy percent of images were culled from this source.
- The next page is Loyola University Medical Education Network which was created by Jeffery L. Melton MD and Jason R. Swanson
http://www.meddean.luc.edu/lumen/MedEd/medicine/dermatology/melton/atlas.htm
- Second to last is Homepage of New Zealand Dermatological Society http://www.dermnetnz.org/
- Finally, the last set of image are from The University of Utah with images by John L. Bezzant
http://medstat.med.utah.edu/kw/derm/

In addition, the folder name printed at the top of the form gives some indication of the source of the data.

mel11_out.jpg

round_out.jpg

mel6_out.jpg

sebker1s_out.jpg

nev7_out.jpg

sebker2s_out.jpg
pg

nevus2s_out.jpg

sebker3s_out.jpg
.jpg

nevus3s_out.jpg

$$
2
$$

cmpd_nevus_out.jpg
cong2_nevus_out.jpg

dysnev3_out.jpg

cong2_nevus_out_...
dyspnev4_out.jpg

cong_nevus_out.jpg

mole1_out.jpg

dysnev1_out.jpg

mole3out.jpg

basalpig_out.jpg

bcc_12_out_smalle..

mel12_out.jpg

mel1b_out.jpg

nel7_morph_fail2.jpg

bcc017_bad_out.jpg

blurry_out.jpg

mel12_out_smaller....

mel7_bad_out.jpg

mel7_morph_fail2_...

bcc_007_out.jpg
bcc_007_out_small...

mel15_out.jpg

mel7_bad_out_sma... mel7_morph_fail1.jpg

mel8_out.jpg
mertipg

MM-002-out.jpg

mel17_out.jpg
mel16_out.jpg

mel7_morph_fail1_...

uneve_out.jpg

mel25_out.jpg
mel25_out smaller...

mel26_out.jpg

mel27_out.jpg

mel28_out.jpg
mel29_out.jpg

stintest.m

$\mathrm{RW}=$ input (' n n Run Classify $=\mathrm{R}$, Database $=\mathrm{W} / \mathrm{n}$ '). .
= R, Database $\left.=\mathrm{W} / \mathrm{n}^{\prime}\right)$;
EDGE DETECTION
\% removes edge artifacts as a result of the prev operations
fixedges2a;
perform another reverse
\% morph operation to region grow
Yfix21 = edge(Yfix19,'sobel');
SHAPE analysis
count the edge pixels for (SHAPE) compactness computation
img_compactness $=$ edgecount(Yfix21,Yfix19);
\% using the processed image and the pixel count, remove background \% from original image
Yfix35 $=$ markedge(Yfix21,B);
imwrite(Yfix 35, 'Afix.jpg',''jpg');
Yfix42 $=$ rembkgrd(Yfix35);
figure, imshow (Y£ix35)
img area ratio = edgeArray (Yfix21);
[img_pct_red,img_pct_black,img_pct_pink,img_no_colors,t] = color_text_prep $(\mathrm{Yfix} 21, \mathrm{Yfix} 42) ;$
$\%$
TEXTURE analysis
figure, subplot (2,1,1),imshow(B),title 'original
subplot (2,1,2), imshow(Yfix42), title 'after processing';
if
$\mathrm{RW}==$ ' R '
allDBRead;
f $R W=' W '$
callDBWrite
Region detection $=$ using morph operations
Paula Yandow-Reilly August 2001
The purpose of this assignment is to investigate threshholding and segmentation basalcc $=$ bcclow.jpg'; otest1 basal cell carcinoma carc \%test2 pigmented basal cell carc. \% red nodule
\% irreg flat maroon dark hairs
\%very red image, orangish lesion
\% faint lesion, light orange color
\% Kin
\% Kevin freckle - massaged
\% John mole 1
John mole 3 cropped cropped John mole normal looking
\% round melanoma
\% very irregular border
blurry melanoma
partially occluded, very red image partially occluded, very black image prod bump red and black $\%$
$\%$
$\%$
$\%$ \% proturbuerant lesion-light red,black hairs freckle-looking dark cloverleaf dark cloverleaf dark small - massaged bkgrd round lesion..trunk

[^15]test $221 . m$

$S E=$ strel ('disk', 3);
for $\mathrm{Yfix} 5=$ imopen(Yfix4,SE);
end;

$0 2 / 1 7 \longdiv { 2 0 3 }$
\%subplot $(3,3,6)$, imshow(BWdfill), title('binary image with filled holes');
\%BWnobord $=$ imclearborder(BWdfill, 4);
\%subplot $(3,3,7)$, imshow(BWnobord), title('cleared border image');
\% comment out for now....
\%seD = strel('diamond',1)
\%seD = strel(diamond , 1);
\%BWfinal = imerode(BWfinal,seD);
\%subplot ($3,3,7$), imshow(BWfinal), title('segmented image');
\%subplot($3,3,8$), imshow(BWoutline), title('outline of cell');
\%Segout $=$ imadd(BW1, immultiply(BWoutline, 255));
\%Segout $=$ imadd(BW1, immultiply(BWoutline, 255));
\%figure, imshow(Segout), title('outlined original image');

\% irregular mole
\% congenital mole compound mole

file = dysnev1;
\% read the basal image into matrix B

cmpdnev $=$ 'cmpd_nevus.jpg'
dysnev1 $=$ 'dysnev1.jpg'
dysnev3 $=$ 'dysnev3.jpg'
wart $=$ 'wart $2 . j p{ }^{\prime}$ ';
irnev $=$ 'irreg nevus.jpg';
wart $=$ 'wart $2 \cdot$ jpg';
irnev $=$ 'irreg nevus.jpg';
[B,map] = imread(file, 'jpg');
thresh $=.005$;
$\mathrm{B} 2=\operatorname{rgb2gray}(\mathrm{B})$;
$\% \%$
subplot $(3,3,2)$, imshow (Yfix2), title 'dis
$\mathrm{SE}=$ strel(ndisk'7);
create structuring element, perform close operation
\% do it again, perform close operation
Yfix2 $=$ imclose(Yfix2, SE)
\%subplot (3,3,3), imshow(Yfix2), title 'disk sd, close again
\% now try maxing it...
Y
Yfix3 $=$ imopen(Yfix2, SE) ;
\%subplot $(3,3,4)$, imshow(Yfix
$S E=$ strel('disk', 3);
Yfix $5=$ imopen(Yfix4, SE) ;
end;

[^16]\%subplot ($3,3,7$), imshow(BWnobord), title('cleared border image');
seD = strel('diamond',1);
BWfinal $=$ imerode (BWnobord, seD)
\%BWfinal = imerode(BWfinal,seD);
\%subplot (3, 3, 7), imshow(BWfinal), title('segmented image');
©BWoutline $=$ bwperim(BWfinal);
\%subplot (3, 3, 8), imshow(BWoutline), title('outline of cell');
\%figure, imshow(Segout), title('outlined original image');
Image 2 version uses Yfix＊variable names
need to modify this to do percentages instead of hard coded values
$[\operatorname{maxY}, \operatorname{maxX}]=\operatorname{size}($ Yfix5 $)$
Yfix $7=$ Yfix5
pix＿size $=$ maxY＊maxX；

find a color change indicating the distance
the region of interest
minDistH $=$ floor $(\operatorname{maxX} * .10)$ ；
minDistV $=$ floor $(\operatorname{maxY} * .10)$ ；
$\operatorname{minDistV}=f l o o r(\operatorname{maxY}$
$m i d X=f l o o r(\operatorname{maxX} / 2) ;$
midY $=\mathrm{floor}(\operatorname{maxY} / 2)$ ；
midVal $=0 ;$
begVal $=0 ;$
figure out what the color difference should be．．．

$\begin{aligned} & =B(\operatorname{midY}, \operatorname{midX}, 1) ; \\ & =\text { double }(\mathrm{R}) ;\end{aligned}$
$\mathrm{R}=$ double (R) ； ， ）．
$G=B(m i d Y, m i d x, 2) ;$
$B B=B(m i d Y, m i d X, 3) ;$
$\mathrm{BB}=$ double $(\mathrm{BB}) ;$
$!(O L S+g q)+(S S Z+\supset)+q=$ Le＾PTU

$B=B(1,1,3)$,
begVal $=R+(G+255)+(B B+510) ;$
olor＿dist＿vertical $=\operatorname{abs}(f l o o r(b e g V a l-m i d V a l))$
\％－－ー－ー－ー－－
\％north distance
$\operatorname{maxY}=$ double (maxY) ；
$\max \mathrm{X}=$ double $(\max \mathrm{X})$ ；
starting point： 10 do do
$\begin{aligned} \text { cntr } & =0 ; \\ & =0 ;\end{aligned}$
\% move toward center looking for pixel color change
Eor $=$ midY:maxY

$\max Y=$ double(maxy);
$\operatorname{maxX}=$ double(maxX);
\% starting point:
cntr $=0 ;$

$$
\begin{aligned}
& \text { valpiff }=0 ; \\
& \text { vgpval }=0 ; \\
& \text { otpval }=0 ; \\
& \text { irstflag }=0 ; \\
& \text { pperX }=0 ; \\
& \text { dgepixX }=0 ; \\
& \text { laxEast }=0 ; \\
& =\operatorname{maxX} ; \\
& \text { irstflag }=0 ;
\end{aligned}
$$

\% move toward center looking for pixel color change

entr $=$ entr $+1 ;$
avgpval $=$ floor(totpval/cntr);
if edgepixx ==0

maxEast = \% find the distance
upperX $=$ maxX - edgepixX;
maxEast $=\mathrm{floor}($ upperX $/ 2)$;
maxEast $=$ maxX - maxEast maxEast $=\operatorname{maxX}-$ maxEast
end; \% west distance
\% starting point:
change
color

\% move toward center looking for pixel

pvalDiff $=$ abs (pval - avgpval);
if pvalDiff > color_dist_horizon
edgepixX $=i$
cntr $+1 ;$
totpval $=$ totpval + pval;
avgpval $=$ floor(totpval/cntr);
end;
edgepixX $==0$
minWest $=0$
if
se
$\%$
\% find the distance
minWest $=$ floor(edgepixX/2)
end;
\% comment out images $11 / 23$ - to work form home

YEiX7(i,j) $=255$;
else
$(1<\operatorname{minWest}) \quad(i>\operatorname{maxNorth}) \mid(j>\operatorname{maxEast})$
end;
-
end;
end;
$\%----$
\% for smaller images...don't bother trimming the edge. .
tot size $=\operatorname{maxX} *$ maxY;
if tot_size <45000
YEix7 = Yfix5;
end;
\%subplot (1,3,2), imshow(Yfix7), title 'cleared border';
se $=$ strel ('disk', 4);
Yfix7a = imdilate (Yfix7, se);
\%subplot(1, 3, 3), imshow(Yfix7a), title final dilate';
Can't remember the matlab function (imcomplement!!) Assumes you've run test $221 . m$ and fixedges2.m first uses massaged global image variable Xfix7a

Yfix9b(i,j) $=\operatorname{Yfix9a(i,j);}$
end;
end;
\% just suing this first subplot
\%subplot (1,3,2), imshow(Yfix9b), title 'cleared border';
\% se $=$ strel('disk', 4);
\%subplot (1, 3, 3), imshow(Yfix9c), title
rvrs $3 . m$

[^17]\% February 2003

 end;

\% comment out so work from home 11/23/02
\%figure, imshow(Yfix19)
lab9 = bwlabel(Yfix19,4);
reg_check $=\max (\max (1 a b 9))$;
se77 = strel('disk',7);
Yfix10 = Yfix19;
while reg_check > 1
Yfix10 = imdilate (Yfix10,se77);
\% reg_check $=\max (\max (\mathrm{l}$ ab9 9$)$);
end;
Yfix10 = bwfill(Yfix10, 'holes', 4);
\% check to see if filling holes filled in the cell you are trying to find...

end;
count19
if count19 < 100
end;
\%figure,imshow(Yfix10);
 function $\mathrm{EC}=$ edgecntr(edgepix, objpix)
$\%$
edgecnt $=0 ;$
objcnt $=0 ;$
objcomp $=0 ;$
$\%$
$\%$ get EDGE image dimensions
$[$ Ymax, Xmax] $=$ size(edgepix);
$\%$
$\%$
$\%$
$\%$
$\%$
$\%$
\[

$$
\begin{aligned}
& \text { Compactness Counter } \\
& \text { Paula Yandow-Reilly } \\
& \text { April } 2002 \\
& \text { The function expects to be passed the image edge and } \\
& \text { the detected object (prior to edge boundary detection } \\
& \text { The purpose of this routine is to count the pixels } \\
& \text { that make up an object edge. Then the pixels that make up } \\
& \text { the object are counted (i.e. the area of the object) } \\
& \text { This information is then used to calculate compactness } \\
& \text { compactness }=\text { (edge boundary) } 2 / \text { area }
\end{aligned}
$$
\]

[Ymax, Xmax] = size(edgepix);
\% read the edge image, count all white edge pixels
for $i=1:$ Ymax
for $k=1: \operatorname{Xmax}$
\quad if edgepix $(i, k)==1$
\quad edgecnt $=$ edgecnt +1 ;
\quad end;
end;
end;
$\%$
$\%$ get OBJECT image dimensions
for $i=1:$ Ymax
for $k=1: \operatorname{Xmax}$
\quad if edgepix $(i, k)==1$
\quad edgecnt $=$ edgecnt +1 ;
\quad end;
end;
end;
$\%$
$\%$ get OBJECT image dimensions
for $i=1:$ Ymax
for $k=1: \operatorname{Xmax}$
\quad if edgepix $(i, k)==1$
\quad edgecnt $=$ edgecnt +1 ;
\quad end;
end;
end;
$\%$
$\%$ get OBJECT image dimensions
for $i=1:$ Ymax
for $k=1: \operatorname{Xmax}$
\quad if edgepix $(i, k)==1$
\quad edgecnt $=$ edgecnt +1 ;
\quad end;
end;
end;
$\%$
$\%$ get OBJECT image dimensions
for $i=1:$ Ymax
for $k=1: \operatorname{Xmax}$
\quad if edgepix $(i, k)==1$
\quad edgecnt $=$ edgecnt +1 ;
\quad end;
end;
end;
$\%$
$\%$ get OBJECT image dimensions
for $i=1:$ Ymax
for $k=1: \operatorname{Xmax}$
\quad if edgepix $(i, k)==1$
\quad edgecnt $=$ edgecnt +1 ;
\quad end;
end;
end;
$\%$
$\%$ get OBJECT image dimensions
\% get OBJECT image dimensions
[Ymax,Xmax] = size(objpix);
\%
\% read the image, convert object pixels to value $=1$

$$
t-1 V_{m}+1
$$

for $k=1: X \max$
f objpix $(i, k)=255$
$\begin{aligned} & \text { objpixb(i,k)}=1 \text {; } \\ & \text { else }\end{aligned}$
objpixb(i,k) $=$ objpix(i,k);
end;
end;
end;
Shape Analysis
The purpose of this routine is to use the edge pixels to plot the edge and then use convhull to determine the indentation the original shape and the smoothed the difference between there are many indentations and protrusions this ration will be low. If the shape is fairly smooth, this ratio will be
 function [CH_Ratio] $=$ edgeArray(edgepix)
do 4́
edgecnt $=0 ;$

o.
size $=0$;
\% get EDGE image dimensions
[Ymax, Xmax] = size(edgepix);
sedgeArrayY[Ymax];
read the edge image, store all the white pixel locations

Eor $i=1: Y m a x$

if edgepix $(i, k)==1$
$j=j+1 ;$
edgeArrayY $(j)=i ;$
edgeArrayX $(j)=k ;$
end;
\% call order array, so the area can be calculated
[ordered_X,ordered_Y] = orderArray(edgeArrayX, edgeArrayY); edgeArrayX $=$ ordered_X;
\%figure, plot(edgeArrayY (k), edgeArrayX $(k), ' r-$, edgeArrayY, edgeArrayX, 'b*');
or_area $=$ polyarea(edgeArrayY, edgeArrayX);
Ysize = size(edgeArrayY);
Xsize $=$ size (edgeArrayX);
max(edgeArrayY(k));
$\min ($ edgeArrayY (k));
min(edgeArrayX(k));
size(edgeArrayY(k));
ch area $=$ polyarea (edgeArrayY (k), edgeArrayX (k));
$x=$ 'the
ch_area;
origIn $=$ inpolygon(Xsize,Ysize, edgeArrayY, edgeArrayX); ox = edgeArrayX (k). EY $=$ edgeArrayY (k); or area.
orea_diff
area_diff $=$ ch_area - or_area;
CH_Ratio $=$ or_area/ch_area;
\% try counting pixels inside

orderArray

minDist $=1000$; diff =
$\operatorname{diffX}=0 ;$
nineFill = 9999999;
newCount
nextPos $=0$;
newlen $=$ lenx +1 ;
\% assign the starting coordinates:
$\star \star *$
orderArray
minDist $=1000 ;$
diff $=0 ;$
diffX $=0 ;$
diffy $=0 ;$
nineFill $=9999999 ;$
newCount $=1 ;$
nextPos $=0 ;$
newlen $=1$ enx $+1 ;$
$\%$ assign the starting coordinates:
$\%$
$\%$ make sure to remove last memeber if it equals the first

-

if Xarray(1) == Xarray(leny) \& Yarray(1) == Yarray(leny)
leny $=$ leny $\quad 1 ;$
newX $=\operatorname{zeros}(1$, newlen);
new $Y=$ zeros(1, newlen);
\% seed loop with firs
newX (1) $=$ Xarray (1);
newY(1) = Yarray(1);
Xarray $(1)=$ nineFi11;
Yarray $(1)=$ nineFil1;
current $=1$;
loop through number of coordinates to assign to new array
for i = 1.1eny
loop through x and y arrays and look for next closest pixel

$$
\begin{aligned}
& \text { diffy }=\text { abs(newY(current) - Yarray(j)); } \\
& \text { diff }=\text { diffX + diffy; } \\
& \text { if diff }<=\text { minDist } \\
& \text { nextPos }=j ; \\
& \text { minDist }=\text { diff; } \\
& \text { end; } \\
& \text { end; } \quad \text { if Xarray(j)... } \\
& \text { end; } \quad \% \text { for } j \text { loop... }
\end{aligned}
$$

$$
\begin{aligned}
& \% \\
& \% \text { assign closest pixel to the new arrays } \\
& \text { if nextPos } \sim=\text { nineFill \& nextPos }>0 \text { \& Xarray(nextPos) } \sim=\text { nineFill } \\
& \text { current = current }+1 \text {; } \\
& \text { newX(current) = Xarray(nextPos); } \\
& \text { newY(current) = Yarray(nextPos); } \\
& \text { flag the pixel values so it won't be used again } \\
& \% \quad \text { Xarray(nextPos) = nineFill; } \\
& \% \text { Yarray(nextPos) = nineFili; } \\
& \% \text { end; } \% \text { if nextPos... }
\end{aligned}
$$

$$
\begin{aligned}
& \text { end; \% for i continue looping through the arrays } \\
& \frac{0}{\circ} \text { on completion, add coords to close the loop... } \\
& \frac{0}{\circ} \text { on }
\end{aligned}
$$

$$
\begin{aligned}
& \text { newX }(\text { current }+1)=\text { newX }(1) ; \\
& \text { new }(\text { current }+1)=\text { new }(1) ;
\end{aligned}
$$

$C X=$ newX;
$C Y=$ new $;$

[^18] the which pixels The function expects to be passed the edge and the color segmented image.
Once these pixels are identified, routines are run to evaluate
COLOR
These pixela are then examined for relationships in the red, green, and blue components to determine percent of red and
back in the lesion. Another component in accessing if most caucasion skin, the regression will be a pink color. However, the regressed area may not be segmented out with the lesion. So this metric (\#pink pixels/\#total pixels) gives some measure
that there might be regression present.

and TEXTURE

color_text_prep.m
Paula Yandow-Reilly
January 2003

[^19]M
get EDGE image dimensions
\% analyze the pixels inside of the polygons..
$=0$
read the edge image, store all the white pixel locations for $i=1: \operatorname{Ymax}$
for $k=1: \operatorname{Xmax}$

if $\begin{aligned} & \text { edgepix }(i, k)==1 \\ & \\ & =j+1 ; \\ & \text { edgeArrayY }(j)=i ; \\ & \text { edgeArrayX }(j)=k ; \\ & \text { end; }\end{aligned}$
$M=\operatorname{mat} 2 \operatorname{gray}(\mathrm{M})$;
 $j=0 ;$
contr $=0 ;$
full X $=0 ;$
fullY $=0 ;$
entry $=0 ;$
$i=0 ;$
$1=0 ;$
Kline $=[1:$
full $=[1:$
datestr (now
Mend $=$ Ymax
for $j=1: Y$
full X $=$
for $j=1$:Send
end; full $=$ [full Kline];
display 'finished creating full' size(fullX)
datestr (now)
fully = [];
fully $=[$ fully repmat $(i,[1, X \max])]$;
end;
size(fully)
datestr(now)
\% order the array...
[ordered_X,ordered_Y] origIn = inpolygon(fully,fullX,ordered_Y, ordered_X);
size(origIn)
$=0 ;$
$=0 ;$
$0 ;$
$\frac{0}{\circ}$ assign the inside pixels to the output matrix
[Ymax,Xmax] = size(M);
Yin $=0 ;$
$\operatorname{xin}=0$;
:0 =
1: Ymax

or i' ${ }^{\text {for }}$
$m=0 ;$
$1=0 ;$
$i=0 ;$
$\mathrm{j}=0$;
$\operatorname{Yin}(k)=i$;
end;
end;
$\operatorname{Yin}(k)=i ;$
end;
end;
\%---
\% now put use the X and Y arrays to locate the lesion pixels and do analysis
end;
check for pink pixels to check for regression

$$
\begin{aligned}
& \text { or } \begin{array}{l}
\text { i }=1 \text { :totPixels } \\
R \\
R=\text { double(R); } \\
G=\operatorname{segpix}(Y i n(i), \operatorname{Xin}(i), 2) ; \\
G=\operatorname{double}(G) ; \\
B=\operatorname{segpix}(Y i n(i), \operatorname{Xin}(i), 3) ; \\
B=\text { double(B); } \\
\text { if } \sim=0 \& G \sim=0 \\
\text { gvsred }=G / R ; \\
\text { else } \\
\text { gvsred }=0 ; \\
\text { end; } \\
\text { if } R \sim 0 \& B \sim=0 \\
\text { bvsred }=B / R ; \\
\text { else } \\
\quad \text { bvsred }=0 ; \\
\text { end; }
\end{array}
\end{aligned}
$$

\% now put x and y together to make the output matrix of the lesion pixels

$\operatorname{maxX}=(\max (X i n)-\min (X i n)) ;$ if $\max X>\max Y$ $\operatorname{maxY}=\operatorname{maxX}$;
else
$\max X=\operatorname{maxY} ;$
end;

$$
\text { pink_cnt }=\text { pink_cnt }+1
$$ matlab's powerful functions

$\operatorname{maxY}=(\max (\mathrm{Yin})-\min (\mathrm{Yin})) ;$
for $i=1:$ txtSize
for $j=1:$ txtSize
txtmat $(i, j)=7$;
end;

\% now reduce the sub matrix to 10 greylevels to make computation reasonable
txtOut $=$ grayslice(txtout, 10);
txtOut $=$ grayslice (txtout, 10);
$q=$ find (txtOut $==0)$;
$q=$ find (txtout $==0)$
$r=$ find (txtout $==1)$
$s=$ find (txtout $==2)$
$t=$ find $($ txtout $==3)$
$\mathrm{u}=$ find (txtOut $==4$) ;
$v=$ find(txtOut $==5$);
$\begin{aligned} \mathrm{x} & =\text { find(txtOut }==6) ; \\ \mathrm{w} & =\text { find (txtout }==7)\end{aligned}$
$y=$ find (txtOut $==8$);
\% move the levels up by

$1 ;$
$2 ;$
$3 ;$
$4 ;$
$5 ;$
$6 ;$
$7 ;$
$8 ;$
$9 ;$
$10 ;$
II II || || || || || || || ||
txtOut (q)
txtOut (r)

txtOut (t)
txtout (u)
txtout (v)

txtOut (y)
txtOut (z)
Color
\%------------ send values back to calling routine
$\%$
$\% \quad$ CotPixels $=$ double(totPixels);
toc_cnt $=$ double(red_cnt) ;
relack_cnt $=$ double(black_cnt);
pink_cnt $=$ double(pink_cnt);
\%
red_pct $=$ red_cnt/totPixels;
black_pct $=$ black_cnt/totPixels;
pink_pct $=$ pink_cnt/totPixels;
no_colors $=$ color_count;
$\% \quad$ TEXTURE
$\%$
$t=$ txtout;
$x=$ fullX;
$y=$ fully;

function $y=\operatorname{cosoccur}(x, d, o)$
$[m, n]=\operatorname{size}(x) ;$
$M=\operatorname{zeros}(10,10) ;$
i

$$
\begin{aligned}
& \text { \% Orientation is East } \\
& \text { \% Initial pixel, row value } \\
& \% \text { Initial pixel, column value }
\end{aligned}
$$

\% Row boundary checking
Set i index into M
Find the pixel to compare Set j index into M
\% Next pixel, column value
\% Orientation is West
$02 / 18 / 2003$
end

$$
\begin{aligned}
& \text { if } c=1 \\
& c=n ; \\
& r=r+ \\
& \text { else } \\
& c= c+d-1
\end{aligned}
$$

\% Orientation is South
\% Orientation is North
error('Invalid direction:north, south, east, or west please')
texture.m
Paula Yandow-Reilly
January 2003
This function expects to be passed a sub matrix created by
texture_prep.m
the function sends the modified grayscale image to various texture
algorithms to retrieve texture measurements.
 function [ENERGY,ENTROPY,DISTANCE,CONTRAST] = texture(txtmatrix)
M = co_occur(txtmatrix) ;
ENERGY $=$ energy (M);
ENTROPY = entropy (M)
DISTANCE $=$ distance (M);
CONTRAST $=$ contrast(M);
energy of the co-occurrence e70壮 ---
n computes This functi
matrix for
homogeneit courtesy
function $y=$ energy (x)
$y=\operatorname{sum}(\operatorname{sum}(x s q u a r e d))$;
erscopy.m
function $y=$ entropy (x)
\% convert counts to probabilities
if $P(i, j) \quad \sim=0$
$E=E+P(i, j) * \log 2(P(i, j))$;
end
$!((x)$ ums ums $=W$
$!0=W$
$!(x)$ əzts $=\left[u^{\prime} u x\right]$
$P=x / M$;
for $i=1: m$
H
scalar feature of the co-occurrence
bsolute average

 of s This function calculates a
matrix called distance. It
distance of the gray levels
of distance indicates a lack
courtesy Roxanne Canosa
function $y=$ distance (x)
$[\mathrm{m}, \mathrm{n}]=\operatorname{size}(\mathrm{x}) ;$
$\mathrm{M}=0 ;$
$\mathrm{P}=0$
$\mathrm{P}=0$;
for $i=1: m$
for $j=1: n$
end $P=P+\operatorname{abs}(i-j) * x(i, j) ;$
$M=\operatorname{sum}(\operatorname{sum}(x)) ;$
$Y=1 / M * P ;$
This difference gives informaion image.

$x(i, j)))^{\wedge} 2 ;$
\% RED - has warning levels in all three categories: shape, color, and texture
$\% \quad$ AMBER - has warning levels in at least 2 categories
$\%$
GREEN - doesn't appear to have any warning levels
$\%$
$\% *$
$\%$
FWL = 'GREEN';
img_no_colors
img_area_ratio
img_texture_distance
img_compactness This script assigns a Feature Warning Level value based on
database results for Melanoma vs Mole. It uses the most indicative
vectors produced for shape, color, and texture
The Feature Warning Level classification has three levels:
RED - has warning levels in all three categories: shape, color, and
check for RED - 3 out of 4 will turn it RED
$=0 ;$
img_no_colors >350
$R=R+1 ;$
nd;
img_area_ratio $<.96$
$R=R+1$;
00 ロ.
end;
img_texture_distance $>.5$
$R=R+1 ;$ end;
$=\mathrm{R}+\mathrm{I}_{\text {; }}$

Paula Yandow-Reilly
February 2003
February 2003
This script assigns a Feature Warning Level value based on
O.
\%
\% *
$02 / 23 / 2003$
N

[^20]dbWrite.m

Paula Yandow-Reilly February 2003

This function accepts feature vector parms in and
writes them to the file lesion.mat. The backup for this file is called lesion.bkp.
Currently the function only appends records.
the function sends back a status flag to ind was written ok
function [status] = dbWrite(fi, di, ni, ri, bi, pi, ci, ari,tei,teni, tdi, tci)
$\begin{aligned} \mathrm{fi} & =\left[\begin{array}{ll}\mathrm{fi} & \prime \&^{\prime}\end{array}\right] ; \\ \mathrm{di} & =\left[\begin{array}{ll}\mathrm{di} & \prime \#\end{array}\right] ; \\ \mathrm{s} & =0 \text { ' }\end{aligned}$
f
d
S
\% write the char fields record
fid = fopen('lesion.mat, 'a');
fwrite(fid, fi, ' $8 *$ char');
fwrite(fid,di,' $8 *$ char', 1);
$\%$
$\%$ write the number fields record

fclose(fid) ;
status $=s$;

> This function reads records from the lesion.mat file database. The function accepts image features as input and will loop through the data in the file checking for a match. The function will return the name of the closest match, or if the gap is too large will return "no match". The system uses a simple voting system to determine the closest match.
function [match] = dbio(fi,di,ni,ri,bi,pi,ci,ari,tei,teni,tdi,tci)

first_time3 = 'Y';
rec_filename $=0 ;$
rec_diagnosis $=0 ;$
rec_no_colors $=0 ;$
rec_pct_red $=0 ;$
rec_pt_black $=0 ;$
rec_pct_pink $=0 ;$
rec_compactness
rec_area_ratio $=0 ;$
rec_texture energy
\% read records...
fid = fopen('lesion.mat');
pos = 0;
status = fseek(fid,pos,'bof');
while status $==0$
first get the 2 char fields:
tline $=$ fread (fid, charlen, ${ }^{\prime *}$ char');
$[q, r]=$ size(tline);
q $\sim=0$
first_time $==$ 'Y'
filename $=[$ char(tline(i))];
first_time $=$ 'N';
else
rec_filename $=$
end;

nline $=$ fread(fid, $10,8^{*}$ float64'); $[q, r]=$ size(nline);
if $r \sim=0 \& q \sim=0$
rec_no_colors
$=$ nline (1); $=$ nline (2);

$=$ nline (5); $=$ nline $(6) ;$
$=$ nline $(7) ;$
nline (8);
rec_texture_contrast $=$ nline (10);
if diff_amt $<=$ min_ni
vote_pix $=$ vote_pix $+1 ;$
min_ni $=$ diff_amt
end;
end
dif
if
diff_amt = abs(rec_pct_red - ri);
if diff_amt <= min_ri
vote_pix = vote_pix $+1 ;$
min_ri = diff_amt;
end;
diff_amt $=$ abs (rec_pct_black - bi);
if diff_amt <= min_bi
vote_pix = vote_pix $+1 ;$
min_bi $=$ diff_amt; end;
diff_amt $=a b s\left(r e c _p c t _p i n k-p i\right) ;$
if diff_amt <= min_pi
vote_pix = vote_pix +1 ;
end;
diff_amt $=$ abs(rec_compactness - ci);
if diff_amt <=
vote_pix = vote_pix +1 ;
min_ci $=$ diff_amt;
end;
diff_amt = abs(rec_area_ratio - ari);
if diff_amt <= min_ari
vote_pix $=$ vote_pix $+1 ;$
min_ari $=$ diff amt;
end;
diff_amt = abs(rec_texture_energy - tei);
if diff_amt <= min_tei
vote_pix $=$ vote_pix +1 ;
min_tei $=$ diff_amt;
diff_amt = abs(rec_texture_entropy - teni);
$\begin{aligned} \text { diff_amt } & =\text { min_teni } \\ \text { vote_pix } & =\text { vote_pix }+1 ; \\ \text { min_teni } & =\text { diff_amt; }\end{aligned}$
end;

end,
pos $=\mathrm{ftell}(\mathrm{fid})$;
status = fseek(fid,pos, 'bof') ;
reset for reading char fields for next record
irst_done = 'N';
last_done = 'N';
first_time = 'Y'
first_time3 = 'Y'
rec_filename $=0$
rec_no_colors $=0$
rec_pct_red = 0;
rec_pct_black $=0$;
rec_compactness $=0$;
rec_area_ratio $=0$;
rec_texture energy $=0$;
rec texture_entropy $=$
rec_texture_distance
rec_texture_contrast
if best_vote > 2
match $=$ current_match;
ma
match $=$ 'unknown';
end;
\%
$\%$
$\%---$
\% dbReadMatch.m
Paula Yandow-Reilly
This function reads records from the lesion.mat a The function will return the name of the closest
 f the gap is too large will return "no match" The gaps are determined by the difference between the mean for melanoma images vs mean values for benign images.
function [match] $=$ dbio(fi,di,ni,ri,bi,pi, ci, ari,tei,teni,tdi,tci)
flags used to find the end of the character fields

record layout ec_texture_energy $=0 ;$ rec_filename $=0 ;$
rec_diagnosis $=0 ;$
rec_no_colors $=0 ;$
rec_pct_red $=0 ;$
rec_pct_black $=0 ;$
rec_pct_pink $=0 ;$
rec_compactness $=0 ;$
rec_area_ratio $=0 ;$
rec_texture_energy
rec_texture_entropy
rec_texture_distance $=0$;
rec_texture_contrast
fid $=$ fopen('lesion.mat);
pos $=0$;
status = fseek(fid,pos,'bof');
while status $==0$
tline $=$ fread(fid, charlen, ' $8 *$ char') ;
[q,r] = size(tline);
$r \sim=0 \& q \sim=0$
for $=1: q$
char_cnt $=$ char_cnt
if char(tline(i))
if first time
$==$
$=$

$=$
char(tline(i)) $\sim=, ' \& \cdot \&$ first_done $==~ ' N ' ~$
rec_filename $=$ [char(tline(i))];
first_time $=$
rec_filename $=[$ rec_filename $\operatorname{char}(t l i n e(i))] ;$
end; else ${ }^{\text {end; }}$
first_done $=$
endi
Y'
if char(tline(i)) == '\#'
if
first_time $3=' Y$ '
rec_diagnosis $=[$ char(tline(i) $)] ;$
first_time $3=' N ' ;$
else
rec_diagnosis $=$ [rec_diagnosis char(tline(i))];
end;
end;
end; for \quad end; if
if rec_filename $==0$
break
end;
\% now read the associated feature vectors

$$
\begin{aligned}
& \text { nline }=0 ; \\
& \text { \%if first_rec == 'Y' } \\
& \text { char_cnt }=\text { char_cnt - } 1 ; \\
& \% \text { first_rec = 'N'; } \\
& \text { \%end; } \\
& \text { pos = prev_pos + char_cnt }+1 ; \\
& \text { char_cnt = } 0 ; \\
& \text { status }=\text { fseek(fid,pos, 'bof'); } \\
& \%
\end{aligned}
$$

diff total $=a b s(r e a d$ total _ input total) ; diff_total $=$ abs (read_total
if diff_total < min_total
min_total $=$ diff_total;
min_sum = read_total;
min_file $=$ rec_filename;
end;
pos $=$ ftell(fid);
prev_pos $=$ ftell(fid); \quad (bof').
status $=$ fseek(fid,pos, 'bof');
\% reset for reading char fields for next record \% clear input fields for the next record
first_done $=$ 'N';
last_done $=$
'N';
Eirst_time $=$ ' Y^{\prime} ';
first_time2 $={ }^{\prime} Y^{\prime} ;$
first_time $={ }^{\prime} Y^{\prime} ;$
rec_filename $=0 ;$
rec_diagnosis $=0 ;$
rec_no_colors $=0 ;$
rec_pct_red $=0 ;$
rec_pct_black $=0 ;$
rec_pct_pink $=0 ;$
rec_compactness $=0 ;$
rec_area_ratio $=0 ;$
rec_texture_energy
rec_texture_entropy
rec_texture_distance
rec_texture_contrast
end; \quad owhile fclose(fid)
close(fid);
\% determine if closest match in within a reasonable range
$\%$ a reasonable range is determined to be the average values
$\%$ for melanoma images for number of colors + compactness +
$\%$ area_ratio + texture_distance...+/- 20 percent
$\%$ min_sum >= allowed_min \& min_sum <= allowed_max
if match $=$ min_file;
mat
else
match $=$ 'unknown';
end;
\%

[^0]: *images from
 http://www.cancer.org/docroot/PED/content/ped_7_1_Skin_Cancer_Detection_What_You_Can_Do.asp?sit earea=PED

[^1]: ${ }^{*}$ images from
 http://www.cancer.org/docroot/PED/content/ped_7_1_Skin_Cancer_Detection_What_You_Can_Do.asp?sit earea $=$ PED

[^2]: *images from http://www.dermlite.com/platinum.html

[^3]: - ** figures from http://www.mathworks.com/access/helpdesk/help/toolbox/images/strel.shtml

[^4]: - ** figures from : http://www.coreco.com/web/news.nsf/frm_lbbsarc?OpenForm\&Lang=Gb

[^5]: *** figures from : http://www.coreco.com/web/news.nsf/frm_lbbsarc?OpenForm\&Lang=Gb

[^6]: * ** figures from http://www.coreco.com/web/news.nsf/frm_lbbsarc?OpenForm\&Lang=Gb

[^7]: * figure from http://gimp-savvy.com/BOOK/index.html?node50.html

[^8]: * figure from http://gimp-savvy.com/BOOK/index.html?node50.html

[^9]: * image from Indiana University: http://www.pathology.iupui.edu/drhood/melanoma.html

[^10]: *** Images from Iowa College of Medicine : http://tray.dermatology.uiowa.edu/DermImag.htm

[^11]: * image from Indiana University http://www.pathology.iupui.edu/drhood/melanoma.html
 ** image from New Zealand Dermatological Society site : http://www.dermnetnz.org/

[^12]: *** image from the University of Florida: Health Science Center: http://www.health.ufl.edu/molehill/molehill.html

[^13]: - Images from Loyola University :
 http://www.meddean.luc.edu/lumen/MedEd/medicine/dermatology/melton/atlas.htm
 ** Images from Iowa College of Medicine : http://tray.dermatology.uiowa.edu/DermImag.htm
 ."* Image from the University of Utah: http://medstat.med.utah.edu/kw/derm/

[^14]: - Images from Iowa College of Medicine : http://tray.dermatology.uiowa.edu/DermImag.htm

[^15]: 覀

[^16]: sBWnobord $=$ imclearborder(BWdfill, 4).

[^17]: * rvis3.m

[^18]: end; edgefound $=0$;
 end;
 > end;
 end;
 > \% comment out to work from home 11.23 .02
 > \%figure, imshow(pixnobg) ; $\mathrm{BE}=\mathrm{pixnobg}$;
 > return;

[^19]: \% turn the segmented RGB image grayscale:
 (this is used to find the lesion pixels)
 $M=r g b 2 g r a y(s e g p i x) ;$

[^20]: $\mathrm{R}>=3$
 $\mathrm{FWL}={ }^{\prime} \mathrm{RED}$ ' ;
 $\mathrm{Y}>=2$
 $\mathrm{FWL}={ }^{\prime}$ AMBER'; end; end;
 FWL

